Suppr超能文献

整合复杂数据源以深入了解肺血管疾病(2015年格罗弗会议系列)

Integration of complex data sources to provide biologic insight into pulmonary vascular disease (2015 Grover Conference Series).

作者信息

Brittain Evan L, Chan Stephen Y

机构信息

Division of Cardiovascular Medicine and Vanderbilt Translational and Clinical Cardiovascular Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Division of Cardiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

出版信息

Pulm Circ. 2016 Sep;6(3):251-60. doi: 10.1086/686995.

Abstract

The application of complex data sources to pulmonary vascular diseases is an emerging and promising area of investigation. The use of -omics platforms, in silico modeling of gene networks, and linkage of large human cohorts with DNA biobanks are beginning to bear biologic insight into pulmonary hypertension. These approaches to high-throughput molecular phenotyping offer the possibility of discovering new therapeutic targets and identifying variability in response to therapy that can be leveraged to improve clinical care. Optimizing the methods for analyzing complex data sources and accruing large, well-phenotyped human cohorts linked to biologic data remain significant challenges. Here, we discuss two specific types of complex data sources-gene regulatory networks and DNA-linked electronic medical record cohorts-that illustrate the promise, challenges, and current limitations of these approaches to understanding and managing pulmonary vascular disease.

摘要

复杂数据源在肺血管疾病中的应用是一个新兴且有前景的研究领域。“组学”平台的使用、基因网络的计算机模拟以及大型人类队列与DNA生物样本库的关联,正开始为肺动脉高压带来生物学见解。这些高通量分子表型分析方法提供了发现新治疗靶点以及识别治疗反应变异性的可能性,而这种变异性可用于改善临床护理。优化分析复杂数据源的方法以及积累与生物数据相关的大型、表型良好的人类队列仍然是重大挑战。在此,我们讨论两种特定类型的复杂数据源——基因调控网络和与DNA相关的电子病历队列——它们说明了这些理解和管理肺血管疾病方法的前景、挑战及当前局限性。

相似文献

3
Introduction: Cancer Gene Networks.引言:癌症基因网络
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
5
Enhancement of Plant Productivity in the Post-Genomics Era.后基因组时代植物生产力的提高
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
6
Relevance of Multi-Omics Studies in Cardiovascular Diseases.多组学研究在心血管疾病中的相关性。
Front Cardiovasc Med. 2019 Jul 17;6:91. doi: 10.3389/fcvm.2019.00091. eCollection 2019.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验