Suppr超能文献

了解猴子中移动视觉目标的轨迹及其跟踪的演变。

Learning the trajectory of a moving visual target and evolution of its tracking in the monkey.

作者信息

Bourrelly Clara, Quinet Julie, Cavanagh Patrick, Goffart Laurent

机构信息

Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France; and.

Laboratoire Psychologie de la Perception, UMR 8242, Centre National de la Recherche Scientifique, Université Paris Descartes, Paris, France.

出版信息

J Neurophysiol. 2016 Dec 1;116(6):2739-2751. doi: 10.1152/jn.00519.2016. Epub 2016 Sep 28.

Abstract

An object moving in the visual field triggers a saccade that brings its image onto the fovea. It is followed by a combination of slow eye movements and catch-up saccades that try to keep the target image on the fovea as long as possible. The accuracy of this ability to track the "here-and-now" location of a visual target contrasts with the spatiotemporally distributed nature of its encoding in the brain. We show in six experimentally naive monkeys how this performance is acquired and gradually evolves during successive daily sessions. During the early exposure, the tracking is mostly saltatory, made of relatively large saccades separated by low eye velocity episodes, demonstrating that accurate (here and now) pursuit is not spontaneous and that gaze direction lags behind its location most of the time. Over the sessions, while the pursuit velocity is enhanced, the gaze is more frequently directed toward the current target location as a consequence of a 25% reduction in the number of catch-up saccades and a 37% reduction in size (for the first saccade). This smoothing is observed at several scales: during the course of single trials, across the set of trials within a session, and over successive sessions. We explain the neurophysiological processes responsible for this combined evolution of saccades and pursuit in the absence of stringent training constraints. More generally, our study shows that the oculomotor system can be used to discover the neural mechanisms underlying the ability to synchronize a motor effector with a dynamic external event.

摘要

视野中移动的物体触发扫视,将其图像带到中央凹上。随后是缓慢眼动和追赶扫视的组合,这些动作试图尽可能长时间地将目标图像保持在中央凹上。这种追踪视觉目标“此时此地”位置的能力的准确性,与其在大脑中编码的时空分布特性形成对比。我们在六只未经实验训练的猴子身上展示了这种表现是如何在连续的每日实验过程中习得并逐渐发展的。在早期接触阶段,追踪大多是跳跃式的,由相对较大的扫视动作组成,中间夹杂着低眼速阶段,这表明精确的(此时此地)追踪不是自发的,并且注视方向在大多数时间都落后于其位置。在实验过程中,随着追踪速度的提高,由于追赶扫视次数减少25%以及(第一次扫视)大小减小37%,注视更频繁地指向当前目标位置。这种平滑现象在多个尺度上都能观察到:在单次试验过程中、在一个实验阶段内的一组试验中以及在连续的实验阶段中。我们解释了在没有严格训练约束的情况下,负责扫视和追踪这种联合演变的神经生理过程。更一般地说,我们的研究表明,眼动系统可用于发现将运动效应器与动态外部事件同步的能力背后的神经机制。

相似文献

1
Learning the trajectory of a moving visual target and evolution of its tracking in the monkey.
J Neurophysiol. 2016 Dec 1;116(6):2739-2751. doi: 10.1152/jn.00519.2016. Epub 2016 Sep 28.
2
Predictive elements in ocular interception and tracking of a moving target by untrained cats.
Exp Brain Res. 2001 Jul;139(2):233-47. doi: 10.1007/s002210100759.
3
Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.
Prog Brain Res. 2017;236:243-268. doi: 10.1016/bs.pbr.2017.07.009. Epub 2017 Sep 19.
4
Tracking a moving visual target in the rhesus monkey: influence of the occurrence frequency of the target path.
J Neurophysiol. 2023 Dec 1;130(6):1425-1443. doi: 10.1152/jn.00280.2023. Epub 2023 Nov 1.
5
Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey.
J Neurophysiol. 2018 Oct 1;120(4):1640-1654. doi: 10.1152/jn.00278.2018. Epub 2018 Jul 11.
7
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys.
J Neurosci. 2017 Feb 8;37(6):1394-1412. doi: 10.1523/JNEUROSCI.2682-16.2016. Epub 2016 Dec 21.
9
What triggers catch-up saccades during visual tracking?
J Neurophysiol. 2002 Mar;87(3):1646-50. doi: 10.1152/jn.00432.2001.

引用本文的文献

3
Sensorimotor-linked reward modulates smooth pursuit eye movements in monkeys.
Front Neurosci. 2024 Jan 9;17:1297914. doi: 10.3389/fnins.2023.1297914. eCollection 2023.
4
5
Comparison of the precision of smooth pursuit in humans and head unrestrained monkeys.
J Eye Mov Res. 2018 Nov 9;11(4). doi: 10.16910/jemr.11.4.6.
6
Neurophysiology of visually guided eye movements: critical review and alternative viewpoint.
J Neurophysiol. 2018 Dec 1;120(6):3234-3245. doi: 10.1152/jn.00402.2018. Epub 2018 Oct 31.
7
Pursuit disorder and saccade dysmetria after caudal fastigial inactivation in the monkey.
J Neurophysiol. 2018 Oct 1;120(4):1640-1654. doi: 10.1152/jn.00278.2018. Epub 2018 Jul 11.
8
Smooth Pursuit Eye Movement of Monkeys Naive to Laboratory Setups With Pictures and Artificial Stimuli.
Front Syst Neurosci. 2018 Apr 17;12:15. doi: 10.3389/fnsys.2018.00015. eCollection 2018.
9
Choosing a foveal goal recruits the saccadic system during smooth pursuit.
J Neurophysiol. 2018 Aug 1;120(2):489-496. doi: 10.1152/jn.00418.2017. Epub 2018 Apr 18.
10
The caudal fastigial nucleus and the steering of saccades toward a moving visual target.
J Neurophysiol. 2018 Aug 1;120(2):421-438. doi: 10.1152/jn.00141.2018. Epub 2018 Apr 11.

本文引用的文献

1
Does the Brain Extrapolate the Position of a Transient Moving Target?
J Neurosci. 2015 Aug 26;35(34):11780-90. doi: 10.1523/JNEUROSCI.1212-15.2015.
2
Internal models direct dragonfly interception steering.
Nature. 2015 Jan 15;517(7534):333-8. doi: 10.1038/nature14045. Epub 2014 Dec 10.
3
Influence of predictability on control of extra-retinal components of smooth pursuit during prolonged 2D tracking.
Exp Brain Res. 2015 Mar;233(3):885-97. doi: 10.1007/s00221-014-4164-x. Epub 2014 Dec 5.
4
The neuronal basis of on-line visual control in smooth pursuit eye movements.
Vision Res. 2015 May;110(Pt B):257-64. doi: 10.1016/j.visres.2014.06.008. Epub 2014 Jul 1.
5
When during horizontal saccades in monkey does cerebellar output affect movement?
Brain Res. 2013 Mar 29;1503:33-42. doi: 10.1016/j.brainres.2013.02.001. Epub 2013 Feb 8.
6
Visual fixation as equilibrium: evidence from superior colliculus inactivation.
J Neurosci. 2012 Aug 1;32(31):10627-36. doi: 10.1523/JNEUROSCI.0696-12.2012.
7
Saccadic interception of a moving visual target after a spatiotemporal perturbation.
J Neurosci. 2012 Jan 11;32(2):452-61. doi: 10.1523/JNEUROSCI.3896-11.2012.
8
Similarity of superior colliculus involvement in microsaccade and saccade generation.
J Neurophysiol. 2012 Apr;107(7):1904-16. doi: 10.1152/jn.01125.2011. Epub 2012 Jan 11.
9
Internal models in the cerebellum.
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. doi: 10.1016/s1364-6613(98)01221-2.
10
Incorporating prediction in models for two-dimensional smooth pursuit.
PLoS One. 2010 Sep 3;5(9):e12574. doi: 10.1371/journal.pone.0012574.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验