Suppr超能文献

染色体结构的可转移模型。

Transferable model for chromosome architecture.

作者信息

Di Pierro Michele, Zhang Bin, Aiden Erez Lieberman, Wolynes Peter G, Onuchic José N

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12168-12173. doi: 10.1073/pnas.1613607113. Epub 2016 Sep 29.

Abstract

In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. We report a theoretical model for chromatin (Minimal Chromatin Model) that explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. First, we trained our energy function using the Hi-C contact map of chromosome 10 from human GM12878 lymphoblastoid cells. Then, we used the model to perform molecular dynamics simulations producing an ensemble of 3D structures for all GM12878 autosomes. Finally, we used these 3D structures to generate contact maps. We found that simulated contact maps closely agree with experimental results for all GM12878 autosomes. The ensemble of structures resulting from these simulations exhibited unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories.

摘要

在体内,人类基因组折叠成具有特征性的三维结构整体。驱动折叠过程的机制仍然未知。我们报告了一种染色质理论模型(最小染色质模型),该模型解释了间期染色体的折叠,并生成了与实验数据一致的染色体构象。该模型的能量景观是通过使用最大熵原理推导出来的,并依赖于两个实验得出的输入:将基因座分类为染色质类型以及染色质环位置的目录。首先,我们使用来自人类GM12878淋巴母细胞系的10号染色体的Hi-C接触图谱训练我们的能量函数。然后,我们使用该模型进行分子动力学模拟,为所有GM12878常染色体生成三维结构整体。最后,我们使用这些三维结构生成接触图谱。我们发现,模拟的接触图谱与所有GM12878常染色体的实验结果密切吻合。这些模拟产生的结构整体呈现出无纽结的染色体、染色质类型的相分离,以及开放染色质倾向于位于染色体区域外围的趋势。

相似文献

1
Transferable model for chromosome architecture.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12168-12173. doi: 10.1073/pnas.1613607113. Epub 2016 Sep 29.
2
De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12126-12131. doi: 10.1073/pnas.1714980114. Epub 2017 Oct 31.
3
A Scalable Computational Approach for Simulating Complexes of Multiple Chromosomes.
J Mol Biol. 2021 Mar 19;433(6):166700. doi: 10.1016/j.jmb.2020.10.034. Epub 2020 Nov 6.
4
Chromosome Modeling on Downsampled Hi-C Maps Enhances the Compartmentalization Signal.
J Phys Chem B. 2021 Aug 12;125(31):8757-8767. doi: 10.1021/acs.jpcb.1c04174. Epub 2021 Jul 28.
7
Topology, structures, and energy landscapes of human chromosomes.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6062-7. doi: 10.1073/pnas.1506257112. Epub 2015 Apr 27.
8
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. doi: 10.1073/pnas.1518552112. Epub 2015 Oct 23.
9
Bayesian inference of chromatin structure ensembles from population-averaged contact data.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7824-7830. doi: 10.1073/pnas.1910364117. Epub 2020 Mar 19.
10
Population-based 3D genome structure analysis reveals driving forces in spatial genome organization.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1663-72. doi: 10.1073/pnas.1512577113. Epub 2016 Mar 7.

引用本文的文献

2
The challenge of chromatin model comparison and validation: A project from the first international 4D Nucleome Hackathon.
PLoS Comput Biol. 2025 Aug 19;21(8):e1013358. doi: 10.1371/journal.pcbi.1013358. eCollection 2025 Aug.
3
Differential Crosslinking and Contractile Motors Drive Nuclear Chromatin Compaction.
bioRxiv. 2025 Jul 27:2025.07.24.666416. doi: 10.1101/2025.07.24.666416.
4
Static three-dimensional structures determine fast dynamics between distal loci pairs in interphase chromosomes.
Sci Adv. 2025 Aug;11(31):eadx1763. doi: 10.1126/sciadv.adx1763. Epub 2025 Aug 1.
6
Quantifying conformational heterogeneity of 3D genome organization in fruit fly.
PLoS One. 2025 Jul 3;20(7):e0326927. doi: 10.1371/journal.pone.0326927. eCollection 2025.
7
Quantifying Conformational Heterogeneity of 3D Genome Organization in Fruit Fly.
bioRxiv. 2025 May 27:2025.05.24.655945. doi: 10.1101/2025.05.24.655945.
8
10
Predicting gene expression changes from chromatin structure modification.
NPJ Syst Biol Appl. 2025 Apr 15;11(1):34. doi: 10.1038/s41540-025-00510-4.

本文引用的文献

1
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.
Phys Rev Lett. 2016 Jun 17;116(24):248101. doi: 10.1103/PhysRevLett.116.248101. Epub 2016 Jun 14.
2
Mesoscale Modeling Reveals Hierarchical Looping of Chromatin Fibers Near Gene Regulatory Elements.
J Phys Chem B. 2016 Aug 25;120(33):8642-53. doi: 10.1021/acs.jpcb.6b03197. Epub 2016 Jun 16.
3
Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1238-43. doi: 10.1073/pnas.1518280113. Epub 2016 Jan 19.
4
Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
Nature. 2016 Jan 21;529(7586):418-22. doi: 10.1038/nature16496. Epub 2016 Jan 13.
5
Stable Chromosome Condensation Revealed by Chromosome Conformation Capture.
Cell. 2015 Nov 5;163(4):934-46. doi: 10.1016/j.cell.2015.10.026.
6
Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6456-65. doi: 10.1073/pnas.1518552112. Epub 2015 Oct 23.
8
Topology, structures, and energy landscapes of human chromosomes.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):6062-7. doi: 10.1073/pnas.1506257112. Epub 2015 Apr 27.
9
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
10
Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains.
Nucleic Acids Res. 2014 Sep;42(15):9553-61. doi: 10.1093/nar/gku698. Epub 2014 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验