Di Pierro Michele, Zhang Bin, Aiden Erez Lieberman, Wolynes Peter G, Onuchic José N
Center for Theoretical Biological Physics, Rice University, Houston, TX 77005;
Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12168-12173. doi: 10.1073/pnas.1613607113. Epub 2016 Sep 29.
In vivo, the human genome folds into a characteristic ensemble of 3D structures. The mechanism driving the folding process remains unknown. We report a theoretical model for chromatin (Minimal Chromatin Model) that explains the folding of interphase chromosomes and generates chromosome conformations consistent with experimental data. The energy landscape of the model was derived by using the maximum entropy principle and relies on two experimentally derived inputs: a classification of loci into chromatin types and a catalog of the positions of chromatin loops. First, we trained our energy function using the Hi-C contact map of chromosome 10 from human GM12878 lymphoblastoid cells. Then, we used the model to perform molecular dynamics simulations producing an ensemble of 3D structures for all GM12878 autosomes. Finally, we used these 3D structures to generate contact maps. We found that simulated contact maps closely agree with experimental results for all GM12878 autosomes. The ensemble of structures resulting from these simulations exhibited unknotted chromosomes, phase separation of chromatin types, and a tendency for open chromatin to lie at the periphery of chromosome territories.
在体内,人类基因组折叠成具有特征性的三维结构整体。驱动折叠过程的机制仍然未知。我们报告了一种染色质理论模型(最小染色质模型),该模型解释了间期染色体的折叠,并生成了与实验数据一致的染色体构象。该模型的能量景观是通过使用最大熵原理推导出来的,并依赖于两个实验得出的输入:将基因座分类为染色质类型以及染色质环位置的目录。首先,我们使用来自人类GM12878淋巴母细胞系的10号染色体的Hi-C接触图谱训练我们的能量函数。然后,我们使用该模型进行分子动力学模拟,为所有GM12878常染色体生成三维结构整体。最后,我们使用这些三维结构生成接触图谱。我们发现,模拟的接触图谱与所有GM12878常染色体的实验结果密切吻合。这些模拟产生的结构整体呈现出无纽结的染色体、染色质类型的相分离,以及开放染色质倾向于位于染色体区域外围的趋势。