Rotroff Daniel M, Motsinger-Reif Alison A
Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA.
Int J Genomics. 2016;2016:1715985. doi: 10.1155/2016/1715985. Epub 2016 Sep 4.
As "-omics" data technology advances and becomes more readily accessible to address complex biological questions, increasing amount of cross "-omics" dataset is inspiring the use and development of integrative bioinformatics analysis. In the current review, we discuss multiple options for integrating data across "-omes" for a range of study designs. We discuss established methods for such analysis and point the reader to in-depth discussions for the various topics. Additionally, we discuss challenges and new directions in the area.
随着“组学”数据技术的进步以及更易于获取以解决复杂的生物学问题,越来越多的跨“组学”数据集正激发着整合生物信息学分析的应用和发展。在当前的综述中,我们讨论了针对一系列研究设计跨“组学”整合数据的多种选择。我们讨论了此类分析的既定方法,并引导读者查阅针对各个主题的深入讨论。此外,我们还讨论了该领域的挑战和新方向。