Suppr超能文献

多组学大数据分析挑战:提高对人工智能评估解读的信心。

Multiomic Big Data Analysis Challenges: Increasing Confidence in the Interpretation of Artificial Intelligence Assessments.

机构信息

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27606, United States.

Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States.

出版信息

Anal Chem. 2021 Jun 8;93(22):7763-7773. doi: 10.1021/acs.analchem.0c04850. Epub 2021 May 24.

Abstract

The need for holistic molecular measurements to better understand disease initiation, development, diagnosis, and therapy has led to an increasing number of multiomic analyses. The wealth of information available from multiomic assessments, however, requires both the evaluation and interpretation of extremely large data sets, limiting analysis throughput and ease of adoption. Computational methods utilizing artificial intelligence (AI) provide the most promising way to address these challenges, yet despite the conceptual benefits of AI and its successful application in singular omic studies, the widespread use of AI in multiomic studies remains limited. Here, we discuss present and future capabilities of AI techniques in multiomic studies while introducing analytical checks and balances to validate the computational conclusions.

摘要

为了更好地理解疾病的发生、发展、诊断和治疗,需要进行整体分子测量,这导致了越来越多的组学分析。然而,多组学评估所提供的丰富信息既需要评估,也需要解释极其庞大的数据集,这限制了分析的通量和采用的便利性。利用人工智能 (AI) 的计算方法为解决这些挑战提供了最有希望的途径,但尽管 AI 具有概念上的优势,并且在单一组学研究中得到了成功的应用,AI 在多组学研究中的广泛应用仍然受到限制。在这里,我们讨论了 AI 技术在多组学研究中的现有和未来能力,同时引入了分析性的制衡措施来验证计算得出的结论。

相似文献

3
Big data and artificial intelligence in cancer research.大数据和人工智能在癌症研究中的应用。
Trends Cancer. 2024 Feb;10(2):147-160. doi: 10.1016/j.trecan.2023.10.006. Epub 2023 Nov 15.
4
The future of Artificial Intelligence for the BioTech Big Data landscape.生物技术大数据领域的人工智能的未来。
Curr Opin Biotechnol. 2022 Aug;76:102714. doi: 10.1016/j.copbio.2022.102714. Epub 2022 Apr 29.
7
Application of Artificial Intelligence in Drug Discovery.人工智能在药物发现中的应用。
Curr Pharm Des. 2022;28(33):2690-2703. doi: 10.2174/1381612828666220608141049.

引用本文的文献

4
Cancer chemoprevention: signaling pathways and strategic approaches.癌症化学预防:信号通路与策略方法
Signal Transduct Target Ther. 2025 Apr 18;10(1):113. doi: 10.1038/s41392-025-02167-1.
10
Artificial Intelligence in Metabolomics: A Current Review.代谢组学中的人工智能:当前综述
Trends Analyt Chem. 2024 Sep;178. doi: 10.1016/j.trac.2024.117852. Epub 2024 Jul 3.

本文引用的文献

1
2
Protein Abundance Prediction Through Machine Learning Methods.通过机器学习方法进行蛋白质丰度预测
J Mol Biol. 2021 Nov 5;433(22):167267. doi: 10.1016/j.jmb.2021.167267. Epub 2021 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验