Suppr超能文献

识别记忆中脑电图的单试验分析:追踪记忆强度的神经关联。

A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength.

作者信息

Ratcliff Roger, Sederberg Per B, Smith Troy A, Childers Russ

机构信息

The Ohio State University, United States.

The Ohio State University, United States.

出版信息

Neuropsychologia. 2016 Dec;93(Pt A):128-141. doi: 10.1016/j.neuropsychologia.2016.09.026. Epub 2016 Sep 29.

Abstract

Recent work in perceptual decision-making has shown that although two distinct neural components differentiate experimental conditions (e.g., did you see a face or a car), only one tracked the evidence guiding the decision process. In the memory literature, there is a distinction between a fronto-central evoked potential measured with EEG beginning at 350ms that seems to track familiarity and a late parietal evoked potential that peaks at 600ms that tracks recollection. Here, we applied single-trial regressor analysis (similar to multivariate pattern analysis, MVPA) and diffusion decision modeling to EEG and behavioral data from two recognition memory experiments to test whether these two components contribute to the recognition decision process. The regressor analysis only involved whether an item was studied or not and did not involve any use of the behavioral data. Only late EEG activity distinguishes studied from not studied items that peaks at about 600ms following each test item onset predicted the diffusion model drift rate derived from the behavioral choice and reaction times (but only for studied items). When drift rate was made a linear function of the trial-level regressor values, the estimate for studied items was different than zero. This showed that the later EEG activity indexed the trial-to-trial variability in drift rate for studied items. Our results provide strong evidence that only a single EEG component reflects evidence being used in the recegnition decision process.

摘要

近期关于知觉决策的研究表明,尽管有两个不同的神经成分可区分实验条件(例如,你看到的是一张脸还是一辆车),但只有一个成分跟踪引导决策过程的证据。在记忆文献中,通过脑电图测量的额中央诱发电位(始于350毫秒,似乎跟踪熟悉度)与在600毫秒达到峰值的顶叶晚期诱发电位(跟踪回忆)之间存在区别。在此,我们将单试次回归分析(类似于多变量模式分析,MVPA)和扩散决策建模应用于来自两个识别记忆实验的脑电图和行为数据,以测试这两个成分是否对识别决策过程有贡献。回归分析仅涉及一个项目是否被研究过,并未涉及行为数据的任何运用。只有脑电图的晚期活动能区分被研究过的项目和未被研究过的项目,在每个测试项目开始后约600毫秒达到峰值,该活动预测了从行为选择和反应时间得出的扩散模型漂移率(但仅针对被研究过的项目)。当漂移率成为试次水平回归值的线性函数时,对被研究项目的估计不为零。这表明,脑电图的晚期活动为被研究项目的漂移率在试次间的变异性提供了指标。我们的结果提供了强有力的证据,即只有单一的脑电图成分反映了识别决策过程中所使用的证据。

相似文献

1
A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength.
Neuropsychologia. 2016 Dec;93(Pt A):128-141. doi: 10.1016/j.neuropsychologia.2016.09.026. Epub 2016 Sep 29.
2
Simultaneous EEG-fMRI reveals brain networks underlying recognition memory ERP old/new effects.
Neuroimage. 2015 Aug 1;116:112-22. doi: 10.1016/j.neuroimage.2015.05.026. Epub 2015 May 16.
4
Context-dependent repetition effects on recognition memory.
Brain Cogn. 2010 Jul;73(2):110-8. doi: 10.1016/j.bandc.2010.04.003. Epub 2010 May 20.
5
Remembering and knowing: electrophysiological distinctions at encoding but not retrieval.
Neuroimage. 2009 May 15;46(1):280-9. doi: 10.1016/j.neuroimage.2009.01.048. Epub 2009 Feb 5.
6
Quantifying the time for accurate EEG decoding of single value-based decisions.
J Neurosci Methods. 2015 Jul 30;250:114-25. doi: 10.1016/j.jneumeth.2014.09.029. Epub 2014 Oct 5.
7
Changes in brain electrical activity during extended continuous word recognition.
Neuroimage. 2005 Jul 1;26(3):952-9. doi: 10.1016/j.neuroimage.2005.03.003. Epub 2005 Apr 7.
8
Neural processing of recollection, familiarity and priming at encoding: evidence from a forced-choice recognition paradigm.
Brain Res. 2014 Oct 17;1585:72-82. doi: 10.1016/j.brainres.2014.08.024. Epub 2014 Aug 16.
9
Maintaining a cautious state of mind during a recognition test: a large-scale fMRI study.
Neuropsychologia. 2015 Jan;67:132-47. doi: 10.1016/j.neuropsychologia.2014.12.011. Epub 2014 Dec 10.
10
No evidence from MVPA for different processes underlying the N300 and N400 incongruity effects in object-scene processing.
Neuropsychologia. 2018 Nov;120:9-17. doi: 10.1016/j.neuropsychologia.2018.09.016. Epub 2018 Sep 25.

引用本文的文献

1
Evolving object concepts in the adult brain: An electrophysiological investigation.
Cogn Affect Behav Neurosci. 2025 Jun 2. doi: 10.3758/s13415-025-01299-9.
3
Studying memory processes at different levels with simultaneous depth and surface EEG recordings.
Front Hum Neurosci. 2023 Apr 4;17:1154038. doi: 10.3389/fnhum.2023.1154038. eCollection 2023.
4
Discriminating memory disordered patients from controls using diffusion model parameters from recognition memory.
J Exp Psychol Gen. 2022 Jun;151(6):1377-1393. doi: 10.1037/xge0001133. Epub 2021 Nov 4.
6
: Visual Episodic Memory in Cannabis Users and Polydrug Cannabis Users: ROC and ERP Preliminary Investigation.
Front Hum Neurosci. 2021 Jun 11;15:677793. doi: 10.3389/fnhum.2021.677793. eCollection 2021.
7
Dynamics of Long-Range Temporal Correlations in Broadband EEG During Different Motor Execution and Imagery Tasks.
Front Neurosci. 2021 May 28;15:660032. doi: 10.3389/fnins.2021.660032. eCollection 2021.
8
Slow drift rate predicts ADHD symptomology over and above executive dysfunction.
Child Neuropsychol. 2021 Aug;27(6):834-855. doi: 10.1080/09297049.2021.1902490. Epub 2021 Mar 23.
9
Characterizing the brain's dynamical response from scalp-level neural electrical signals: a review of methodology development.
Cogn Neurodyn. 2020 Dec;14(6):731-742. doi: 10.1007/s11571-020-09631-4. Epub 2020 Sep 4.

本文引用的文献

2
Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making.
J Neurosci. 2015 Feb 11;35(6):2476-84. doi: 10.1523/JNEUROSCI.2410-14.2015.
3
Time-varying boundaries for diffusion models of decision making and response time.
Front Psychol. 2014 Dec 9;5:1364. doi: 10.3389/fpsyg.2014.01364. eCollection 2014.
4
Choice certainty is informed by both evidence and decision time.
Neuron. 2014 Dec 17;84(6):1329-42. doi: 10.1016/j.neuron.2014.12.015.
7
Decision making as a window on cognition.
Neuron. 2013 Oct 30;80(3):791-806. doi: 10.1016/j.neuron.2013.10.047.
8
Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time.
Psychol Rev. 2014 Jan;121(1):1-32. doi: 10.1037/a0034190. Epub 2013 Sep 30.
9
A Bayesian framework for simultaneously modeling neural and behavioral data.
Neuroimage. 2013 May 15;72:193-206. doi: 10.1016/j.neuroimage.2013.01.048. Epub 2013 Jan 28.
10
Parameter variability and distributional assumptions in the diffusion model.
Psychol Rev. 2013 Jan;120(1):281-92. doi: 10.1037/a0030775. Epub 2012 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验