Frank Lawrence R, Galinsky Vitaly L
Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA; Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA.
Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA; Department of ECE, University of California, San Diego, La Jolla, CA 92093-0407, USA.
J Phys A Math Theor. 2016 Sep 30;49(39). doi: 10.1088/1751-8113/49/39/395001. Epub 2016 Sep 6.
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging.
提出了一种新的数据分析方法,该方法解决了检测多变量数据时空变化的一般问题。该方法利用了两种最新且互补的通用数据分析方法,即信息场理论(IFT)和熵谱路径(ESP)。这两种方法都重新构建并纳入了贝叶斯理论,从而利用先验信息来揭示未知信号的潜在结构。ESP和IFT的统一创造了一种通过构造非高斯且非线性的方法,并且发现该方法能产生独特的信号行为时空模式,这些模式可根据其重要性进行排序,由此可以构建和量化参数变化的时空轨迹。还给出了该理论在现实世界中的两个简短应用示例,用于分析性质完全不同、毫无关联且缺乏任何潜在相似性的数据。第一个示例对静息态功能磁共振成像(rsFMRI)数据进行了分析,使我们能够创建一种高效且准确的计算方法来评估和分类大脑活动。第二个示例展示了该方法在应用于使用移动多普勒雷达记录的数据来分析龙卷风发展和形成复杂阶段的强烈大气风暴环流系统方面的潜力。该方法的参考实现将作为QUEST工具包的一部分提供,QUEST工具包目前正在成像科学计算中心开发。