Li Chunmei, Hotz Blake, Ling Shengjie, Guo Jin, Haas Dylan S, Marelli Benedetto, Omenetto Fiorenzo, Lin Samuel J, Kaplan David L
Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA.
Biomaterials. 2016 Dec;110:24-33. doi: 10.1016/j.biomaterials.2016.09.014. Epub 2016 Sep 20.
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration.
蚕和蜘蛛吐出的丝纤维展现出非凡的机械性能,具备强度、延展性和韧性的独特组合。相比之下,再生丝材料的机械性能可通过控制制造工艺来调节。在此,我们引入一种仿生全水相工艺,以获得用于制造功能化骨科器械的块状再生丝基材料。该工艺生成的丝材料复制了天然丝纤维的纳米级结构,并具有出色的机械性能。这些仿生材料展现出优异的可加工性,为制造新一代可吸收骨科器械开辟了道路,避免了使用有机溶剂,从而能够用生物活性分子进行功能化处理,以促进骨重塑和骨整合。