Nie Kexin, Zhou Sicheng, Li Hu, Tian Jingyi, Shen Weiliang, Huang Wenwen
Centre for Regeneration and Cell Therapy, The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
Department of Orthopedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
Front Bioeng Biotechnol. 2023 May 2;11:1199507. doi: 10.3389/fbioe.2023.1199507. eCollection 2023.
Musculoskeletal diseases are the leading causes of chronic pain and physical disability, affecting millions of individuals worldwide. Over the past two decades, significant progress has been made in the field of bone and cartilage tissue engineering to combat the limitations of conventional treatments. Among various materials used in musculoskeletal tissue regeneration, silk biomaterials exhibit unique mechanical robustness, versatility, favorable biocompatibility, and tunable biodegradation rate. As silk is an easy-to-process biopolymer, silks have been reformed into various materials formats using advanced bio-fabrication technology for the design of cell niches. Silk proteins also offer active sites for chemical modifications to facilitate musculoskeletal system regeneration. With the emergence of genetic engineering techniques, silk proteins have been further optimized from the molecular level with other functional motifs to introduce new advantageous biological properties. In this review, we highlight the frontiers in engineering natural and recombinant silk biomaterials, as well as recent progress in the applications of these new silks in the field of bone and cartilage regeneration. The future potentials and challenges of silk biomaterials in musculoskeletal tissue engineering are also discussed. This review brings together perspectives from different fields and provides insight into improved musculoskeletal engineering.
肌肉骨骼疾病是慢性疼痛和身体残疾的主要原因,影响着全球数百万人。在过去二十年中,骨与软骨组织工程领域取得了重大进展,以应对传统治疗方法的局限性。在用于肌肉骨骼组织再生的各种材料中,丝绸生物材料具有独特的机械强度、多功能性、良好的生物相容性和可调节的生物降解率。由于丝绸是一种易于加工的生物聚合物,利用先进的生物制造技术已将丝绸改造成各种材料形式,用于设计细胞微环境。丝绸蛋白还提供化学修饰的活性位点,以促进肌肉骨骼系统的再生。随着基因工程技术的出现,丝绸蛋白已在分子水平上与其他功能基序进一步优化,以引入新的有利生物学特性。在本综述中,我们重点介绍了天然和重组丝绸生物材料工程的前沿领域,以及这些新型丝绸在骨与软骨再生领域应用的最新进展。还讨论了丝绸生物材料在肌肉骨骼组织工程中的未来潜力和挑战。本综述汇集了不同领域的观点,并为改进肌肉骨骼工程提供了见解。