Suppr超能文献

基于网络的方法在分子水平上建立2型糖尿病及其并发症之间的关系并结合分子对接机制

Network Based Approach in the Establishment of the Relationship between Type 2 Diabetes Mellitus and Its Complications at the Molecular Level Coupled with Molecular Docking Mechanism.

作者信息

Rampogu Shailima, Rampogu Lemuel Mary

机构信息

Celesta Research Lab, Hyderabad, Telangana 500 076, India.

West Thames College, London TW7 4HS, UK.

出版信息

Biomed Res Int. 2016;2016:6068437. doi: 10.1155/2016/6068437. Epub 2016 Sep 6.

Abstract

Diabetes mellitus (DM) is one of the major metabolic disorders that is currently threatening the world. DM is seen associated with obesity and diabetic retinopathy (DR). In the present paper we tried to evaluate the relationship between the three aliments at the gene level and further performed the molecular docking to identify the common drug for all the three diseases. We have adopted several software programs such as Phenopedia, VennViewer, and CDOCKER to accomplish the objective. Our results revealed six genes that commonly associated and are involved in the signalling pathway. Furthermore, evaluation of common gene association from the selected set of genes projected the presence of SIRT1 in all the three aliments. Therefore, we targeted protein 4KXQ which was produced from the gene SIRT1 and challenged it with eight phytochemicals, adopting the CDOCKER. C1 compound has displayed highest -CDOCKER energy and -CDOCKER interaction energy of 43.6905 and 43.3953, respectively. Therefore, this compound is regarded as the most potential lead molecule.

摘要

糖尿病(DM)是当前威胁全球的主要代谢紊乱疾病之一。糖尿病与肥胖症和糖尿病性视网膜病变(DR)相关。在本文中,我们试图在基因水平评估这三种疾病之间的关系,并进一步进行分子对接以确定这三种疾病的通用药物。我们采用了多种软件程序,如Phenopedia、VennViewer和CDOCKER来实现这一目标。我们的结果揭示了六个共同关联且参与信号通路的基因。此外,从选定的基因集中评估共同基因关联表明,这三种疾病中均存在SIRT1。因此,我们以由基因SIRT1产生的蛋白质4KXQ为靶点,并采用CDOCKER用八种植物化学物质对其进行挑战。C1化合物分别显示出最高的 -CDOCKER能量和 -CDOCKER相互作用能量,分别为43.6905和43.3953。因此,该化合物被视为最具潜力的先导分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5ec/5028860/8c602e199ab0/BMRI2016-6068437.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验