Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA.
National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Science. 2016 Sep 23;353(6306). doi: 10.1126/science.aaf2157.
Crystallography has been fundamental to the development of many fields of science over the last century. However, much of our modern science and technology relies on materials with defects and disorders, and their three-dimensional (3D) atomic structures are not accessible to crystallography. One method capable of addressing this major challenge is atomic electron tomography. By combining advanced electron microscopes and detectors with powerful data analysis and tomographic reconstruction algorithms, it is now possible to determine the 3D atomic structure of crystal defects such as grain boundaries, stacking faults, dislocations, and point defects, as well as to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity. Here we review the recent advances and the interdisciplinary science enabled by this methodology. We also outline further research needed for atomic electron tomography to address long-standing unresolved problems in the physical sciences.
结晶学在过去一个世纪的许多科学领域的发展中一直是至关重要的。然而,我们现代科学技术的很大一部分依赖于具有缺陷和无序的材料,而它们的三维(3D)原子结构是结晶学无法获得的。一种能够解决这一重大挑战的方法是原子电子断层扫描术。通过将先进的电子显微镜和探测器与强大的数据分析和断层扫描重建算法相结合,现在可以确定晶界、层错、位错和点缺陷等晶体缺陷的 3D 原子结构,以及精确定位材料中单个原子的 3D 坐标,而无需假设晶体性。在这里,我们回顾了这一方法所带来的最新进展和跨学科科学。我们还概述了原子电子断层扫描术需要进一步研究的问题,以解决物理科学中长期未解决的问题。