Suppr超能文献

解析单原子层次的化学有序/无序和材料性质。

Deciphering chemical order/disorder and material properties at the single-atom level.

机构信息

Department of Physics and Astronomy and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA.

Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.

出版信息

Nature. 2017 Feb 1;542(7639):75-79. doi: 10.1038/nature21042.

Abstract

Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

摘要

完美晶体在自然界中较为罕见。实际材料通常包含晶体缺陷和化学有序/无序,例如晶界、位错、界面、表面重构和点缺陷等。这种周期性的破坏强烈影响材料的性能和功能。尽管定量材料特性表征方法发展迅速,但将化学有序/无序和晶体缺陷的三维(3D)原子排列与材料性能相关联仍然是一个挑战。在平行的研究前沿,密度泛函理论(DFT)等量子力学计算已从理想体相系统的建模发展到了掺杂、位错、晶界和界面的“真实”材料建模;但这些计算严重依赖于从晶体学中提取的平均原子模型。为了提高第一性原理计算的预测能力,迫切需要超越平均晶体学测量来使用真实系统的原子坐标。在这里,我们确定了一个铁-铂纳米颗粒中 6569 个铁原子和 16627 个铂原子的 3D 坐标,并在单原子水平上关联了化学有序/无序和晶体缺陷与材料性能。我们以空前的 3D 细节确定了丰富的结构多样性,包括原子组成、晶界、反相界、反位缺陷和交换缺陷。我们表明,实验测量的坐标和具有 22 皮米精度的化学物质可以直接用作 DFT 计算材料特性(如原子自旋和轨道磁矩以及局部磁晶各向异性)的输入。这项工作将晶体缺陷的 3D 原子结构确定与 DFT 计算相结合,有望从根本上提高我们对结构-性能关系的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验