Koepke Amanda A, Longini Ira M, Halloran M Elizabeth, Wakefield Jon, Minin Vladimir N
Fred Hutchinson Cancer Research Center.
University of Florida.
Ann Appl Stat. 2016 Jun;10(2):575-595. doi: 10.1214/16-AOAS908. Epub 2016 Jul 22.
Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.
尽管孟加拉国存在季节性霍乱疫情,但对于环境条件与霍乱病例之间的关系却知之甚少。我们试图基于环境预测因素开发一种孟加拉国霍乱疫情的预测模型。为此,我们在疾病传播模型的背景下,估计诸如水深和水温等环境变量对霍乱疫情的影响。我们实施了一种在易感-感染-康复-易感(SIRS)模型中同时考虑疾病动态和环境变量的方法。整个系统被视为一个连续时间隐马尔可夫模型,其中隐马尔可夫状态是每个时间点易感、感染或康复的人数,而观测状态是报告的霍乱病例数。我们使用贝叶斯框架来拟合这个隐SIRS模型,采用粒子马尔可夫链蒙特卡罗方法从给定观测数据的环境和传播参数的后验分布中进行采样。我们使用模拟数据和来自孟加拉国马图巴里亚的数据来测试这种方法。参数估计用于进行短期预测,以捕捉疫情高峰的形成和下降。我们证明,我们的模型能够在观测到的霍乱病例数增加前数周成功预测人群中感染个体数量的增加,这可以实现疫情的早期预警和资源的及时分配。