Suppr超能文献

孟加拉国霍乱疫情的预测模型

PREDICTIVE MODELING OF CHOLERA OUTBREAKS IN BANGLADESH.

作者信息

Koepke Amanda A, Longini Ira M, Halloran M Elizabeth, Wakefield Jon, Minin Vladimir N

机构信息

Fred Hutchinson Cancer Research Center.

University of Florida.

出版信息

Ann Appl Stat. 2016 Jun;10(2):575-595. doi: 10.1214/16-AOAS908. Epub 2016 Jul 22.

Abstract

Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.

摘要

尽管孟加拉国存在季节性霍乱疫情,但对于环境条件与霍乱病例之间的关系却知之甚少。我们试图基于环境预测因素开发一种孟加拉国霍乱疫情的预测模型。为此,我们在疾病传播模型的背景下,估计诸如水深和水温等环境变量对霍乱疫情的影响。我们实施了一种在易感-感染-康复-易感(SIRS)模型中同时考虑疾病动态和环境变量的方法。整个系统被视为一个连续时间隐马尔可夫模型,其中隐马尔可夫状态是每个时间点易感、感染或康复的人数,而观测状态是报告的霍乱病例数。我们使用贝叶斯框架来拟合这个隐SIRS模型,采用粒子马尔可夫链蒙特卡罗方法从给定观测数据的环境和传播参数的后验分布中进行采样。我们使用模拟数据和来自孟加拉国马图巴里亚的数据来测试这种方法。参数估计用于进行短期预测,以捕捉疫情高峰的形成和下降。我们证明,我们的模型能够在观测到的霍乱病例数增加前数周成功预测人群中感染个体数量的增加,这可以实现疫情的早期预警和资源的及时分配。

相似文献

1
PREDICTIVE MODELING OF CHOLERA OUTBREAKS IN BANGLADESH.
Ann Appl Stat. 2016 Jun;10(2):575-595. doi: 10.1214/16-AOAS908. Epub 2016 Jul 22.
3
A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera.
Trop Med Infect Dis. 2021 Aug 5;6(3):147. doi: 10.3390/tropicalmed6030147.
4
Model distinguishability and inference robustness in mechanisms of cholera transmission and loss of immunity.
J Theor Biol. 2017 May 7;420:68-81. doi: 10.1016/j.jtbi.2017.01.032. Epub 2017 Jan 24.
5
Methods for Model Calibration under High Uncertainty: Modeling Cholera in Bangladesh.
Med Decis Making. 2020 Jul;40(5):693-709. doi: 10.1177/0272989X20938683. Epub 2020 Jul 8.
6
Mapping climate change's impact on cholera infection risk in Bangladesh.
PLOS Glob Public Health. 2022 Oct 14;2(10):e0000711. doi: 10.1371/journal.pgph.0000711. eCollection 2022.
9
Population vulnerability to biannual cholera outbreaks and associated macro-scale drivers in the Bengal Delta.
Am J Trop Med Hyg. 2013 Nov;89(5):950-9. doi: 10.4269/ajtmh.12-0492. Epub 2013 Sep 9.

引用本文的文献

1
PHENOMENOLOGICAL FORECASTING OF DISEASE INCIDENCE USING HETEROSKEDASTIC GAUSSIAN PROCESSES: A DENGUE CASE STUDY.
Ann Appl Stat. 2018 Mar;12(1):27-66. doi: 10.1214/17-aoas1090. Epub 2018 Mar 9.
2
Predictive modeling for infectious diarrheal disease in pediatric populations: A systematic review.
Learn Health Syst. 2023 Jul 29;8(1):e10382. doi: 10.1002/lrh2.10382. eCollection 2024 Jan.
3
Fitting stochastic epidemic models to gene genealogies using linear noise approximation.
Ann Appl Stat. 2023 Mar;17(1):1-22. doi: 10.1214/21-aoas1583. Epub 2023 Jan 24.
4
Statistical modeling of computer malware propagation dynamics in cyberspace.
J Appl Stat. 2020 Nov 10;49(4):858-883. doi: 10.1080/02664763.2020.1845621. eCollection 2022.
5
A Review of the Environmental Trigger and Transmission Components for Prediction of Cholera.
Trop Med Infect Dis. 2021 Aug 5;6(3):147. doi: 10.3390/tropicalmed6030147.
6
Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data.
J Comput Graph Stat. 2017;26(4):918-929. doi: 10.1080/10618600.2017.1328365. Epub 2017 Oct 9.
7
Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens.
Curr Environ Health Rep. 2018 Jun;5(2):293-304. doi: 10.1007/s40572-018-0196-x.

本文引用的文献

1
Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.
J Am Stat Assoc. 2012;107(500):1410-1426. doi: 10.1080/01621459.2012.713876. Epub 2012 Dec 21.
2
Inference for reaction networks using the linear noise approximation.
Biometrics. 2014 Jun;70(2):457-66. doi: 10.1111/biom.12152. Epub 2014 Jan 27.
3
Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.
J Theor Biol. 2013 May 7;324:84-102. doi: 10.1016/j.jtbi.2012.12.021. Epub 2013 Jan 16.
4
Inference for nonlinear epidemiological models using genealogies and time series.
PLoS Comput Biol. 2011 Aug;7(8):e1002136. doi: 10.1371/journal.pcbi.1002136. Epub 2011 Aug 25.
5
Multiple transmission pathways and disease dynamics in a waterborne pathogen model.
Bull Math Biol. 2010 Aug;72(6):1506-33. doi: 10.1007/s11538-010-9507-6. Epub 2010 Feb 9.
6
Bayesian inference of biochemical kinetic parameters using the linear noise approximation.
BMC Bioinformatics. 2009 Oct 19;10:343. doi: 10.1186/1471-2105-10-343.
7
Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
J R Soc Interface. 2010 Feb 6;7(43):271-83. doi: 10.1098/rsif.2009.0151. Epub 2009 Jun 17.
8
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
J R Soc Interface. 2009 Feb 6;6(31):187-202. doi: 10.1098/rsif.2008.0172.
9
Detecting influenza epidemics using search engine query data.
Nature. 2009 Feb 19;457(7232):1012-4. doi: 10.1038/nature07634.
10
Inapparent infections and cholera dynamics.
Nature. 2008 Aug 14;454(7206):877-80. doi: 10.1038/nature07084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验