Suppr超能文献

功能失调的线粒体分裂会损害细胞重编程。

Dysfunctional mitochondrial fission impairs cell reprogramming.

作者信息

Prieto Javier, León Marian, Ponsoda Xavier, García-García Francisco, Bort Roque, Serna Eva, Barneo-Muñoz Manuela, Palau Francesc, Dopazo Joaquín, López-García Carlos, Torres Josema

机构信息

a Department of Biología Celular , Biología Funcional y Antropología Física, Universitat de València , Burjassot , Spain.

b Computational Genomics Department , Centro de Investigación Principe Felipe , Valencia , Spain.

出版信息

Cell Cycle. 2016 Dec;15(23):3240-3250. doi: 10.1080/15384101.2016.1241930. Epub 2016 Oct 18.

Abstract

We have recently shown that mitochondrial fission is induced early in reprogramming in a Drp1-dependent manner; however, the identity of the factors controlling Drp1 recruitment to mitochondria was unexplored. To investigate this, we used a panel of RNAi targeting factors involved in the regulation of mitochondrial dynamics and we observed that MiD51, Gdap1 and, to a lesser extent, Mff were found to play key roles in this process. Cells derived from Gdap1-null mice were used to further explore the role of this factor in cell reprogramming. Microarray data revealed a prominent down-regulation of cell cycle pathways in Gdap1-null cells early in reprogramming and cell cycle profiling uncovered a G2/M growth arrest in Gdap1-null cells undergoing reprogramming. High-Content analysis showed that this growth arrest was DNA damage-independent. We propose that lack of efficient mitochondrial fission impairs cell reprogramming by interfering with cell cycle progression in a DNA damage-independent manner.

摘要

我们最近发现,线粒体分裂在重编程早期以依赖动力相关蛋白1(Drp1)的方式被诱导;然而,控制Drp1募集到线粒体的因子的身份尚未被探究。为了研究这一点,我们使用了一组靶向参与线粒体动力学调节的因子的RNA干扰,并且我们观察到,线粒体动力学蛋白51(MiD51)、甘油磷酸脱氢酶家族成员1(Gdap1)以及在较小程度上的线粒体裂变因子(Mff)在这个过程中发挥关键作用。来自Gdap1基因敲除小鼠的细胞被用于进一步探究该因子在细胞重编程中的作用。微阵列数据显示,在重编程早期,Gdap1基因敲除细胞中的细胞周期途径显著下调,并且细胞周期分析揭示了正在进行重编程的Gdap1基因敲除细胞中存在G2/M期生长停滞。高内涵分析表明,这种生长停滞与DNA损伤无关。我们提出,缺乏有效的线粒体分裂会以与DNA损伤无关的方式干扰细胞周期进程,从而损害细胞重编程。

相似文献

1
Dysfunctional mitochondrial fission impairs cell reprogramming.功能失调的线粒体分裂会损害细胞重编程。
Cell Cycle. 2016 Dec;15(23):3240-3250. doi: 10.1080/15384101.2016.1241930. Epub 2016 Oct 18.
9
Nac1 facilitates pluripotency gene activation for establishing somatic cell reprogramming.Nac1 促进多能性基因激活,建立体细胞重编程。
Biochem Biophys Res Commun. 2019 Oct 15;518(2):253-258. doi: 10.1016/j.bbrc.2019.08.043. Epub 2019 Aug 12.

引用本文的文献

5
Maternal Inflammation During Pregnancy and Offspring Brain Development: The Role of Mitochondria.孕期母体炎症与子代脑发育:线粒体的作用
Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 May;7(5):498-509. doi: 10.1016/j.bpsc.2021.11.003. Epub 2021 Nov 17.

本文引用的文献

4
Peroxisome-mitochondria interplay and disease.过氧化物酶体与线粒体的相互作用及疾病
J Inherit Metab Dis. 2015 Jul;38(4):681-702. doi: 10.1007/s10545-015-9819-7. Epub 2015 Feb 17.
6
Induced pluripotent stem cells for regenerative medicine.用于再生医学的诱导多能干细胞。
Annu Rev Biomed Eng. 2014 Jul 11;16:277-94. doi: 10.1146/annurev-bioeng-071813-105108. Epub 2014 May 29.
7
Nonstochastic reprogramming from a privileged somatic cell state.从特权体细胞状态进行非随机重编程。
Cell. 2014 Feb 13;156(4):649-62. doi: 10.1016/j.cell.2014.01.020. Epub 2014 Jan 30.
8
Mitochondrial form and function.线粒体的形态和功能。
Nature. 2014 Jan 16;505(7483):335-43. doi: 10.1038/nature12985.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验