Suppr超能文献

多模态影像结合专用序列可提高自动化皮质下灰质分割的准确性。

Multi-modal imaging with specialized sequences improves accuracy of the automated subcortical grey matter segmentation.

机构信息

Computer Science, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA.

Computer Science, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN 37235, USA.

出版信息

Magn Reson Imaging. 2019 Sep;61:131-136. doi: 10.1016/j.mri.2019.05.025. Epub 2019 May 21.

Abstract

The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7 T are used, but it is not feasible to routinely scan clinical patients in those scanners. Targeted imaging sequences at 3 T have been presented to enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7 T can be used to accurately segment these structures at 3 T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice Similarity Coefficient (DSC) over 0.88 and a mean surface distance <1.0 mm were achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a DSC over 0.75 and a mean surface distance <1.2 mm were achieved using a combination of T1 and inversion recovery imaging sequences. In the substantia nigra and sub-thalamic nucleus a DSC of over 0.6 and a mean surface distance of <1.0 mm were achieved using the inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together significantly improved segmentation results than over individual modality (p < 0.05 Wilcoxon sign-rank test).

摘要

基底节和边缘系统,特别是丘脑、壳核、内、外苍白球、黑质和丘脑下核,构成了与帕金森病相关的临床信号网络。为了手动追踪这些结构,需要在 7T 上使用高分辨率和专门的序列组合,但在这些扫描仪中对临床患者进行常规扫描是不可行的。在 3T 上已经提出了靶向成像序列,以增强这些结构中特定一组的对比度。在这项工作中,我们展示了可以使用在 7T 上生成的一系列图谱,结合标准和优化的成像序列,在 3T 上准确分割这些结构,尽管没有一种方法在所有结构上都能提供最佳结果。在丘脑和壳核中,使用 T1 和优化的反转恢复成像序列的组合,平均 Dice 相似系数(DSC)超过 0.88,平均表面距离<1.0mm。在内、外苍白球中,使用 T1 和反转恢复成像序列的组合,DSC 超过 0.75,平均表面距离<1.2mm。在黑质和丘脑下核中,使用反转恢复成像序列,DSC 超过 0.6,平均表面距离<1.0mm。平均而言,与单独使用模态相比,使用 T1 和优化的反转恢复序列组合可以显著提高分割结果(p<0.05 Wilcoxon 符号秩检验)。

相似文献

1
Multi-modal imaging with specialized sequences improves accuracy of the automated subcortical grey matter segmentation.
Magn Reson Imaging. 2019 Sep;61:131-136. doi: 10.1016/j.mri.2019.05.025. Epub 2019 May 21.
2
Multi-Modal and Targeted Imaging Improves Automated Mid-Brain Segmentation.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10133. doi: 10.1117/12.2254428. Epub 2017 Feb 24.
5
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
6
T2* Relaxometry in Patients with Parkinson's Disease : Use of an Automated Atlas-based Approach.
Clin Neuroradiol. 2018 Mar;28(1):63-67. doi: 10.1007/s00062-016-0523-2. Epub 2016 Jun 22.
7
Quantitative Susceptibility Mapping in Parkinson's Disease.
PLoS One. 2016 Sep 6;11(9):e0162460. doi: 10.1371/journal.pone.0162460. eCollection 2016.
8
Evaluating accuracy of striatal, pallidal, and thalamic segmentation methods: Comparing automated approaches to manual delineation.
Neuroimage. 2018 Apr 15;170:182-198. doi: 10.1016/j.neuroimage.2017.02.069. Epub 2017 Mar 1.
10
Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.
Neuroimage. 2014 Jan 1;84:534-45. doi: 10.1016/j.neuroimage.2013.08.069. Epub 2013 Sep 7.

引用本文的文献

本文引用的文献

1
A multi-contrast MRI approach to thalamus segmentation.
Hum Brain Mapp. 2020 Jun 1;41(8):2104-2120. doi: 10.1002/hbm.24933. Epub 2020 Jan 20.
2
Multi-atlas tool for automated segmentation of brain gray matter nuclei and quantification of their magnetic susceptibility.
Neuroimage. 2019 May 1;191:337-349. doi: 10.1016/j.neuroimage.2019.02.016. Epub 2019 Feb 7.
4
Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures.
IEEE EMBS Int Conf Biomed Health Inform. 2016 Feb;2016:17-20. doi: 10.1109/BHI.2016.7455824. Epub 2016 Apr 21.
5
Automated segmentation of the substantia nigra, subthalamic nucleus and red nucleus in 7T data at young and old age.
Neuroimage. 2016 Oct 1;139:324-336. doi: 10.1016/j.neuroimage.2016.06.039. Epub 2016 Jun 25.
6
Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool.
Neuroimage. 2016 Jan 15;125:479-497. doi: 10.1016/j.neuroimage.2015.10.013. Epub 2015 Oct 19.
7
Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
Med Image Anal. 2015 Dec;26(1):82-91. doi: 10.1016/j.media.2015.08.010. Epub 2015 Aug 28.
8
Multi-atlas segmentation of biomedical images: A survey.
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
9
Multi-modal ultra-high resolution structural 7-Tesla MRI data repository.
Sci Data. 2014 Dec 9;1:140050. doi: 10.1038/sdata.2014.50. eCollection 2014.
10
Patch-based label fusion segmentation of brainstem structures with dual-contrast MRI for Parkinson's disease.
Int J Comput Assist Radiol Surg. 2015 Jul;10(7):1029-41. doi: 10.1007/s11548-014-1119-4. Epub 2014 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验