Suppr超能文献

通过带正电荷的精氨酸对谷氨酰胺-tRNA还原酶进行N端工程改造以增加5-氨基乙酰丙酸的生物合成。

N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis.

作者信息

Zhang Junli, Weng Huanjiao, Ding Wenwen, Kang Zhen

机构信息

a The Key Laboratory of Industrial Biotechnology, Ministry of Education , School of Biotechnology, Jiangnan University , Wuxi , China.

c School of Life Sciences , Taishan Medical University , Taian , Shandong , China.

出版信息

Bioengineered. 2017 Jul 4;8(4):424-427. doi: 10.1080/21655979.2016.1230572. Epub 2016 Oct 18.

Abstract

Five-Aminolevulinic acid (ALA), the universal precursor of all tetrapyrroles, has various applications in medicine and agriculture industries. Glutamyl-tRNA reductase (GluTR) as the first key enzyme of C5 pathway is feedback regulated by heme, and its N-terminus plays a critical role on its stability control. Here, the GluTR N-terminus was engineered by inserting different numbers of positively charged lysine and arginine residues. The results confirmed that insertion of lysine or arginine residues (especially one arginine residue) behind Thr2 significantly increased the stability of GluTR. By co-expression of the GluTR variant R1 and the glutamate-1-semialdehyde aminotransferase, ALA production was improved 1.76-fold to 1220 mg/L. The GluTR variant R1 constructed here could be used for engineering the C5 pathway to enhance ALA and other products.

摘要

5-氨基乙酰丙酸(ALA)是所有四吡咯的通用前体,在医药和农业产业中有多种应用。谷氨酰-tRNA还原酶(GluTR)作为C5途径的首个关键酶,受血红素的反馈调节,其N端在稳定性控制中起关键作用。在此,通过插入不同数量带正电荷的赖氨酸和精氨酸残基对GluTR的N端进行改造。结果证实,在苏氨酸2(Thr2)后插入赖氨酸或精氨酸残基(尤其是一个精氨酸残基)显著提高了GluTR的稳定性。通过共表达GluTR变体R1和谷氨酸-1-半醛转氨酶,ALA产量提高了1.76倍,达到1220毫克/升。在此构建的GluTR变体R1可用于改造C5途径,以提高ALA及其他产物的产量。

相似文献

1
N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis.
Bioengineered. 2017 Jul 4;8(4):424-427. doi: 10.1080/21655979.2016.1230572. Epub 2016 Oct 18.
2
An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.
Plant Cell. 2011 Dec;23(12):4476-91. doi: 10.1105/tpc.111.086421. Epub 2011 Dec 16.
3
5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
Enzyme Microb Technol. 2015 Dec;81:1-7. doi: 10.1016/j.enzmictec.2015.07.004. Epub 2015 Jul 26.
5
Glutamate recognition and hydride transfer by Escherichia coli glutamyl-tRNA reductase.
FEBS J. 2007 Sep;274(17):4609-14. doi: 10.1111/j.1742-4658.2007.05989.x. Epub 2007 Aug 14.
6
Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase.
Biochem Biophys Res Commun. 2011 Feb 4;405(1):134-9. doi: 10.1016/j.bbrc.2011.01.013. Epub 2011 Jan 8.
8
Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate.
J Biol Chem. 2002 Dec 13;277(50):48657-63. doi: 10.1074/jbc.M206924200. Epub 2002 Oct 4.
9
An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice.
Theor Appl Genet. 2022 Aug;135(8):2817-2831. doi: 10.1007/s00122-022-04151-7. Epub 2022 Jul 2.
10
Regulation of a glutamyl-tRNA synthetase by the heme status.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3135-40. doi: 10.1073/pnas.0611611104. Epub 2007 Feb 20.

引用本文的文献

1
Pathogenic mechanism and therapeutic intervention of impaired N-methylguanosine (mG) tRNA modification.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2405886121. doi: 10.1073/pnas.2405886121. Epub 2024 Oct 29.
3
Natural 5-Aminolevulinic Acid: Sources, Biosynthesis, Detection and Applications.
Front Bioeng Biotechnol. 2022 Feb 25;10:841443. doi: 10.3389/fbioe.2022.841443. eCollection 2022.
4
Downregulating of hemB via synthetic antisense RNAs for improving 5-aminolevulinic acid production in .
3 Biotech. 2021 May;11(5):230. doi: 10.1007/s13205-021-02733-8. Epub 2021 Apr 21.
6
Recent advances in production of 5-aminolevulinic acid using biological strategies.
World J Microbiol Biotechnol. 2017 Oct 16;33(11):200. doi: 10.1007/s11274-017-2366-7.
7
5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
J Ind Microbiol Biotechnol. 2017 Aug;44(8):1127-1135. doi: 10.1007/s10295-017-1940-1. Epub 2017 Apr 5.

本文引用的文献

1
A New Strategy for Production of 5-Aminolevulinic Acid in Recombinant Corynebacterium glutamicum with High Yield.
Appl Environ Microbiol. 2016 Apr 18;82(9):2709-2717. doi: 10.1128/AEM.00224-16. Print 2016 May.
2
Integrated Optimization of the In Vivo Heme Biosynthesis Pathway and the In Vitro Iron Concentration for 5-Aminolevulinate Production.
Appl Biochem Biotechnol. 2016 Mar;178(6):1252-62. doi: 10.1007/s12010-015-1942-2. Epub 2015 Dec 4.
3
Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose.
Microb Cell Fact. 2015 Nov 17;14:183. doi: 10.1186/s12934-015-0364-8.
4
5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
Enzyme Microb Technol. 2015 Dec;81:1-7. doi: 10.1016/j.enzmictec.2015.07.004. Epub 2015 Jul 26.
6
Microbial production and applications of 5-aminolevulinic acid.
Appl Microbiol Biotechnol. 2014 Sep;98(17):7349-57. doi: 10.1007/s00253-014-5925-y. Epub 2014 Jul 13.
7
Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12.
Biotechnol Adv. 2012 Nov-Dec;30(6):1533-42. doi: 10.1016/j.biotechadv.2012.04.003. Epub 2012 Apr 17.
8
Metabolic engineering to improve 5-aminolevulinic acid production.
Bioeng Bugs. 2011 Nov-Dec;2(6):342-5. doi: 10.4161/bbug.2.6.17237. Epub 2011 Nov 1.
9
Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose.
Metab Eng. 2011 Sep;13(5):492-8. doi: 10.1016/j.ymben.2011.05.003. Epub 2011 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验