Suppr超能文献

微生物单细胞油脂的生产策略与应用

Production Strategies and Applications of Microbial Single Cell Oils.

作者信息

Ochsenreither Katrin, Glück Claudia, Stressler Timo, Fischer Lutz, Syldatk Christoph

机构信息

Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology Karlsruhe, Germany.

Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim Stuttgart, Germany.

出版信息

Front Microbiol. 2016 Oct 5;7:1539. doi: 10.3389/fmicb.2016.01539. eCollection 2016.

Abstract

Polyunsaturated fatty acids (PUFAs) of the ω-3 and ω-6 class (e.g., α-linolenic acid, linoleic acid) are essential for maintaining biofunctions in mammalians like humans. Due to the fact that humans cannot synthesize these essential fatty acids, they must be taken up from different food sources. Classical sources for these fatty acids are porcine liver and fish oil. However, microbial lipids or single cell oils, produced by oleaginous microorganisms such as algae, fungi and bacteria, are a promising source as well. These single cell oils can be used for many valuable chemicals with applications not only for nutrition but also for fuels and are therefore an ideal basis for a bio-based economy. A crucial point for the establishment of microbial lipids utilization is the cost-effective production and purification of fuels or products of higher value. The fermentative production can be realized by submerged (SmF) or solid state fermentation (SSF). The yield and the composition of the obtained microbial lipids depend on the type of fermentation and the particular conditions (e.g., medium, pH-value, temperature, aeration, nitrogen source). From an economical point of view, waste or by-product streams can be used as cheap and renewable carbon and nitrogen sources. In general, downstream processing costs are one of the major obstacles to be solved for full economic efficiency of microbial lipids. For the extraction of lipids from microbial biomass cell disruption is most important, because efficiency of cell disruption directly influences subsequent downstream operations and overall extraction efficiencies. A multitude of cell disruption and lipid extraction methods are available, conventional as well as newly emerging methods, which will be described and discussed in terms of large scale applicability, their potential in a modern biorefinery and their influence on product quality. Furthermore, an overview is given about applications of microbial lipids or derived fatty acids with emphasis on food applications.

摘要

ω-3和ω-6类多不饱和脂肪酸(PUFAs)(如α-亚麻酸、亚油酸)对于维持人类等哺乳动物的生物功能至关重要。由于人类无法合成这些必需脂肪酸,因此必须从不同食物来源获取。这些脂肪酸的传统来源是猪肝和鱼油。然而,由藻类、真菌和细菌等产油微生物生产的微生物脂质或单细胞油也是一种很有前景的来源。这些单细胞油可用于许多有价值的化学品,不仅应用于营养领域,还可用于燃料,因此是生物基经济的理想基础。建立微生物脂质利用的一个关键点是具有成本效益地生产和纯化燃料或高价值产品。发酵生产可以通过深层发酵(SmF)或固态发酵(SSF)来实现。所获得的微生物脂质的产量和组成取决于发酵类型和特定条件(如培养基、pH值、温度、通气、氮源)。从经济角度来看,废物流或副产品流可以用作廉价且可再生的碳源和氮源。一般来说,下游加工成本是实现微生物脂质完全经济效率需要解决的主要障碍之一。对于从微生物生物质中提取脂质,细胞破碎最为重要,因为细胞破碎效率直接影响后续的下游操作和整体提取效率。有多种细胞破碎和脂质提取方法可供选择,包括传统方法和新出现的方法,将从大规模适用性、在现代生物炼制中的潜力以及对产品质量的影响等方面进行描述和讨论。此外,还将概述微生物脂质或衍生脂肪酸的应用,重点是食品应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45b7/5050229/b0ae8e9f8942/fmicb-07-01539-g0001.jpg

相似文献

1
Production Strategies and Applications of Microbial Single Cell Oils.
Front Microbiol. 2016 Oct 5;7:1539. doi: 10.3389/fmicb.2016.01539. eCollection 2016.
3
From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
Folia Microbiol (Praha). 2018 Sep;63(5):547-568. doi: 10.1007/s12223-018-0602-7. Epub 2018 Apr 23.
4
Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
Protein Pept Lett. 2018;25(2):195-201. doi: 10.2174/0929866525666180122112805.
5
Fungi (Mold)-Based Lipid Production.
Methods Mol Biol. 2019;1995:51-89. doi: 10.1007/978-1-4939-9484-7_3.
6
Microbial lipids from organic wastes: Outlook and challenges.
Bioresour Technol. 2021 Mar;323:124612. doi: 10.1016/j.biortech.2020.124612. Epub 2020 Dec 25.
9
Polyunsaturated fatty acids production by solid-state fermentation on polyurethane foam by Mortierella alpina.
Biotechnol Prog. 2021 May;37(3):e3113. doi: 10.1002/btpr.3113. Epub 2021 Jan 6.
10
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products.
Biotechnol Adv. 2022 Jan-Feb;54:107791. doi: 10.1016/j.biotechadv.2021.107791. Epub 2021 Jun 27.

引用本文的文献

1
Optimization of Sustainable Single-Cell Oil Production by Rhodotorula mucilaginosa (BT59) from Grape Pomace and Its Functional Characterization.
ACS Omega. 2025 May 30;10(22):23320-23334. doi: 10.1021/acsomega.5c01720. eCollection 2025 Jun 10.
2
is a putative producer of polyunsaturated fatty acids in the gut soil of the composting earthworm .
Appl Environ Microbiol. 2025 Feb 19;91(2):e0206924. doi: 10.1128/aem.02069-24. Epub 2025 Jan 16.
4
Insights into the methodological perspectives for screening polyunsaturated fatty acids-containing bacteria.
Arch Microbiol. 2024 Oct 9;206(11):429. doi: 10.1007/s00203-024-04155-5.
6
Mushroom oils: A review of their production, composition, and potential applications.
Heliyon. 2024 May 22;10(11):e31594. doi: 10.1016/j.heliyon.2024.e31594. eCollection 2024 Jun 15.
8
Production of Single-Cell Oil from a Local Isolate Using Palm Fronds.
Int J Biomater. 2023 Nov 1;2023:8882842. doi: 10.1155/2023/8882842. eCollection 2023.
10
From straw to salmon: a technical design and energy balance for production of yeast oil for fish feed from wheat straw.
Biotechnol Biofuels Bioprod. 2023 Sep 20;16(1):140. doi: 10.1186/s13068-023-02392-2.

本文引用的文献

1
Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content.
Curr Opin Biotechnol. 2016 Feb;37:24-35. doi: 10.1016/j.copbio.2015.09.005. Epub 2015 Sep 29.
2
(13)C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides.
Bioresour Technol. 2015 Dec;197:23-9. doi: 10.1016/j.biortech.2015.08.035. Epub 2015 Aug 20.
4
Microalgal cell disruption in a high-power ultrasonic flow system.
Bioresour Technol. 2015 Oct;193:171-7. doi: 10.1016/j.biortech.2015.06.040. Epub 2015 Jun 12.
6
In situ transesterification of highly wet microalgae using hydrochloric acid.
Bioresour Technol. 2015 Jun;185:421-5. doi: 10.1016/j.biortech.2015.02.092. Epub 2015 Mar 2.
7
Is there a difference in breast milk fatty acid composition of mothers of preterm and term infants?
J Matern Fetal Neonatal Med. 2016 Mar;29(5):832-5. doi: 10.3109/14767058.2015.1020785. Epub 2015 Mar 11.
8
Cell disruption for microalgae biorefineries.
Biotechnol Adv. 2015 Mar-Apr;33(2):243-60. doi: 10.1016/j.biotechadv.2015.01.008. Epub 2015 Feb 2.
9
High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides.
Biotechnol Biofuels. 2015 Jan 22;8(1):6. doi: 10.1186/s13068-014-0190-y. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验