Suppr超能文献

经典微小RNA可促进神经干细胞分化、抵御DNA损伤并促进胆固醇生物合成。

Canonical microRNAs Enable Differentiation, Protect Against DNA Damage, and Promote Cholesterol Biosynthesis in Neural Stem Cells.

作者信息

Liu Zhong, Zhang Cheng, Khodadadi-Jamayran Alireza, Dang Lam, Han Xiaosi, Kim Kitai, Li Hu, Zhao Rui

机构信息

1 Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham , Birmingham, Alabama.

2 Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine , Mayo Clinic College of Medicine, Rochester, Minnesota.

出版信息

Stem Cells Dev. 2017 Feb 1;26(3):177-188. doi: 10.1089/scd.2016.0259. Epub 2016 Dec 9.

Abstract

Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes, and therefore represent a promising donor tissue source for treating neurodegenerative diseases and repairing injuries of the nervous system. However, it remains unclear how canonical microRNAs (miRNAs), the subset of miRNAs requiring the Drosha-Dgcr8 microprocessor and the type III RNase Dicer for biogenesis, regulate NSCs. In this study, we established and characterized Dgcr8 NSCs from conditionally Dgcr8-disrupted mouse embryonic brain. RNA-seq analysis demonstrated that disruption of Dgcr8 in NSCs causes a complete loss of canonical miRNAs and an accumulation of pri-miRNAs. Dgcr8 NSCs can be stably propagated in vitro, but progress through the cell cycle at reduced rates. When induced for differentiation, Dgcr8 NSCs failed to differentiate into neurons, astrocytes, or oligodendrocytes under permissive conditions. Compared to Dgcr8 NSCs, Dgcr8 NSCs exhibit significantly increased DNA damage. Comparative RNA-seq analysis and gene set enrichment analysis (GSEA) revealed that Dgcr8 NSCs significantly downregulate genes associated with neuronal differentiation, cell cycle progression, DNA replication, protein translation, and DNA damage repair. Furthermore, we discovered that Dgcr8 NSCs significantly downregulate genes responsible for cholesterol biosynthesis and demonstrated that Dgcr8 NSCs contain lower levels of cholesterol. Together, our data demonstrate that canonical miRNAs play essential roles in enabling lineage specification, protecting DNA against damage, and promoting cholesterol biosynthesis in NSCs.

摘要

神经干细胞(NSCs)具有分化为神经元、星形胶质细胞和少突胶质细胞的能力,因此是治疗神经退行性疾病和修复神经系统损伤的一种很有前景的供体组织来源。然而,尚不清楚典型微小RNA(miRNAs),即生物合成需要Drosha-Dgcr8微处理器和III型核糖核酸酶Dicer的miRNAs子集,如何调节神经干细胞。在本研究中,我们从条件性Dgcr8缺失的小鼠胚胎脑中建立并鉴定了Dgcr8神经干细胞。RNA测序分析表明,神经干细胞中Dgcr8的缺失导致典型miRNAs完全丧失和初级miRNAs积累。Dgcr8神经干细胞可以在体外稳定增殖,但细胞周期进程减慢。在允许条件下诱导分化时,Dgcr8神经干细胞无法分化为神经元、星形胶质细胞或少突胶质细胞。与野生型神经干细胞相比,Dgcr8神经干细胞的DNA损伤显著增加。比较RNA测序分析和基因集富集分析(GSEA)显示,Dgcr8神经干细胞显著下调与神经元分化、细胞周期进程、DNA复制、蛋白质翻译和DNA损伤修复相关的基因。此外,我们发现Dgcr8神经干细胞显著下调负责胆固醇生物合成的基因,并证明Dgcr8神经干细胞的胆固醇水平较低。总之,我们的数据表明,典型miRNAs在神经干细胞的谱系特化、保护DNA免受损伤以及促进胆固醇生物合成中发挥着重要作用。

相似文献

1
2
Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming.
Stem Cell Reports. 2015 Dec 8;5(6):1119-1127. doi: 10.1016/j.stemcr.2015.11.002.
3
MicroRNA-independent functions of DGCR8 are essential for neocortical development and TBR1 expression.
EMBO Rep. 2017 Apr;18(4):603-618. doi: 10.15252/embr.201642800. Epub 2017 Feb 23.
5
Elevated p53 Activities Restrict Differentiation Potential of MicroRNA-Deficient Pluripotent Stem Cells.
Stem Cell Reports. 2017 Nov 14;9(5):1604-1617. doi: 10.1016/j.stemcr.2017.10.006.
6
Identification of characteristic genes distinguishing neural stem cells from astrocytes.
Gene. 2019 Jan 10;681:26-35. doi: 10.1016/j.gene.2018.09.044. Epub 2018 Sep 25.
7
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal.
Nat Genet. 2007 Mar;39(3):380-5. doi: 10.1038/ng1969. Epub 2007 Jan 28.
8
SUMOylation at K707 of DGCR8 controls direct function of primary microRNA.
Nucleic Acids Res. 2015 Sep 18;43(16):7945-60. doi: 10.1093/nar/gkv741. Epub 2015 Jul 21.
9
Functional Dissection of pri-miR-290~295 in Dgcr8 Knockout Mouse Embryonic Stem Cells.
Int J Mol Sci. 2019 Sep 5;20(18):4345. doi: 10.3390/ijms20184345.
10
The microprocessor component, DGCR8, is essential for early B-cell development in mice.
Eur J Immunol. 2016 Dec;46(12):2710-2718. doi: 10.1002/eji.201646348. Epub 2016 Oct 5.

引用本文的文献

1
The relationship between prognosis of patients with traumatic brain injury and microRNA biogenesis proteins.
Ulus Travma Acil Cerrahi Derg. 2023 Oct 27;29(11):1228-1236. doi: 10.14744/tjtes.2023.54859.
2
Generation of chromosome 1p/19q co-deletion by CRISPR/Cas9-guided genomic editing.
Neurooncol Adv. 2022 Aug 18;4(1):vdac131. doi: 10.1093/noajnl/vdac131. eCollection 2022 Jan-Dec.
3
Emerging Roles of RNA-Binding Proteins in Neurodevelopment.
J Dev Biol. 2022 Jun 10;10(2):23. doi: 10.3390/jdb10020023.
4
Characterization of iPSCs derived from low grade gliomas revealed early regional chromosomal amplifications during gliomagenesis.
J Neurooncol. 2019 Jan;141(2):289-301. doi: 10.1007/s11060-018-03047-1. Epub 2018 Nov 20.
5
DGCR8 Promotes Neural Progenitor Expansion and Represses Neurogenesis in the Mouse Embryonic Neocortex.
Front Neurosci. 2018 Apr 30;12:281. doi: 10.3389/fnins.2018.00281. eCollection 2018.
6
Elevated p53 Activities Restrict Differentiation Potential of MicroRNA-Deficient Pluripotent Stem Cells.
Stem Cell Reports. 2017 Nov 14;9(5):1604-1617. doi: 10.1016/j.stemcr.2017.10.006.
7
Small regulators making big impacts: regulation of neural stem cells by small non-coding RNAs.
Neural Regen Res. 2017 Mar;12(3):397-398. doi: 10.4103/1673-5374.202938.

本文引用的文献

1
miRNA and cholesterol homeostasis.
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2041-2046. doi: 10.1016/j.bbalip.2016.01.005. Epub 2016 Jan 15.
2
Essential Function of Dicer in Resolving DNA Damage in the Rapidly Dividing Cells of the Developing and Malignant Cerebellum.
Cell Rep. 2016 Jan 12;14(2):216-24. doi: 10.1016/j.celrep.2015.12.037. Epub 2015 Dec 31.
3
Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming.
Stem Cell Reports. 2015 Dec 8;5(6):1119-1127. doi: 10.1016/j.stemcr.2015.11.002.
5
Cholesterol metabolism and homeostasis in the brain.
Protein Cell. 2015 Apr;6(4):254-64. doi: 10.1007/s13238-014-0131-3. Epub 2015 Feb 15.
6
A nontranscriptional role for Oct4 in the regulation of mitotic entry.
Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15768-73. doi: 10.1073/pnas.1417518111. Epub 2014 Oct 16.
7
HTSeq--a Python framework to work with high-throughput sequencing data.
Bioinformatics. 2015 Jan 15;31(2):166-9. doi: 10.1093/bioinformatics/btu638. Epub 2014 Sep 25.
8
Regulation of microRNA biogenesis.
Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi: 10.1038/nrm3838. Epub 2014 Jul 16.
9
Stem cells: balancing resistance and sensitivity to DNA damage.
Trends Cell Biol. 2014 May;24(5):268-74. doi: 10.1016/j.tcb.2014.03.002. Epub 2014 Apr 7.
10
OpenComet: an automated tool for comet assay image analysis.
Redox Biol. 2014 Jan 9;2:457-65. doi: 10.1016/j.redox.2013.12.020. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验