Liu Zhong, Zhang Cheng, Khodadadi-Jamayran Alireza, Dang Lam, Han Xiaosi, Kim Kitai, Li Hu, Zhao Rui
1 Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham , Birmingham, Alabama.
2 Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine , Mayo Clinic College of Medicine, Rochester, Minnesota.
Stem Cells Dev. 2017 Feb 1;26(3):177-188. doi: 10.1089/scd.2016.0259. Epub 2016 Dec 9.
Neural stem cells (NSCs) have the capacity to differentiate into neurons, astrocytes, and oligodendrocytes, and therefore represent a promising donor tissue source for treating neurodegenerative diseases and repairing injuries of the nervous system. However, it remains unclear how canonical microRNAs (miRNAs), the subset of miRNAs requiring the Drosha-Dgcr8 microprocessor and the type III RNase Dicer for biogenesis, regulate NSCs. In this study, we established and characterized Dgcr8 NSCs from conditionally Dgcr8-disrupted mouse embryonic brain. RNA-seq analysis demonstrated that disruption of Dgcr8 in NSCs causes a complete loss of canonical miRNAs and an accumulation of pri-miRNAs. Dgcr8 NSCs can be stably propagated in vitro, but progress through the cell cycle at reduced rates. When induced for differentiation, Dgcr8 NSCs failed to differentiate into neurons, astrocytes, or oligodendrocytes under permissive conditions. Compared to Dgcr8 NSCs, Dgcr8 NSCs exhibit significantly increased DNA damage. Comparative RNA-seq analysis and gene set enrichment analysis (GSEA) revealed that Dgcr8 NSCs significantly downregulate genes associated with neuronal differentiation, cell cycle progression, DNA replication, protein translation, and DNA damage repair. Furthermore, we discovered that Dgcr8 NSCs significantly downregulate genes responsible for cholesterol biosynthesis and demonstrated that Dgcr8 NSCs contain lower levels of cholesterol. Together, our data demonstrate that canonical miRNAs play essential roles in enabling lineage specification, protecting DNA against damage, and promoting cholesterol biosynthesis in NSCs.
神经干细胞(NSCs)具有分化为神经元、星形胶质细胞和少突胶质细胞的能力,因此是治疗神经退行性疾病和修复神经系统损伤的一种很有前景的供体组织来源。然而,尚不清楚典型微小RNA(miRNAs),即生物合成需要Drosha-Dgcr8微处理器和III型核糖核酸酶Dicer的miRNAs子集,如何调节神经干细胞。在本研究中,我们从条件性Dgcr8缺失的小鼠胚胎脑中建立并鉴定了Dgcr8神经干细胞。RNA测序分析表明,神经干细胞中Dgcr8的缺失导致典型miRNAs完全丧失和初级miRNAs积累。Dgcr8神经干细胞可以在体外稳定增殖,但细胞周期进程减慢。在允许条件下诱导分化时,Dgcr8神经干细胞无法分化为神经元、星形胶质细胞或少突胶质细胞。与野生型神经干细胞相比,Dgcr8神经干细胞的DNA损伤显著增加。比较RNA测序分析和基因集富集分析(GSEA)显示,Dgcr8神经干细胞显著下调与神经元分化、细胞周期进程、DNA复制、蛋白质翻译和DNA损伤修复相关的基因。此外,我们发现Dgcr8神经干细胞显著下调负责胆固醇生物合成的基因,并证明Dgcr8神经干细胞的胆固醇水平较低。总之,我们的数据表明,典型miRNAs在神经干细胞的谱系特化、保护DNA免受损伤以及促进胆固醇生物合成中发挥着重要作用。