Suppr超能文献

齿状回稀疏编码的组合模型

A Combinatorial Model for Dentate Gyrus Sparse Coding.

作者信息

Severa William, Parekh Ojas, James Conrad D, Aimone James B

机构信息

Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.

出版信息

Neural Comput. 2017 Jan;29(1):94-117. doi: 10.1162/NECO_a_00905. Epub 2016 Oct 20.

Abstract

The dentate gyrus forms a critical link between the entorhinal cortex and CA3 by providing a sparse version of the signal. Concurrent with this increase in sparsity, a widely accepted theory suggests the dentate gyrus performs pattern separation-similar inputs yield decorrelated outputs. Although an active region of study and theory, few logically rigorous arguments detail the dentate gyrus's (DG) coding. We suggest a theoretically tractable, combinatorial model for this action. The model provides formal methods for a highly redundant, arbitrarily sparse, and decorrelated output signal.To explore the value of this model framework, we assess how suitable it is for two notable aspects of DG coding: how it can handle the highly structured grid cell representation in the input entorhinal cortex region and the presence of adult neurogenesis, which has been proposed to produce a heterogeneous code in the DG. We find tailoring the model to grid cell input yields expansion parameters consistent with the literature. In addition, the heterogeneous coding reflects activity gradation observed experimentally. Finally, we connect this approach with more conventional binary threshold neural circuit models via a formal embedding.

摘要

齿状回通过提供信号的稀疏版本,在内嗅皮质和CA3之间形成关键连接。与这种稀疏性增加同时发生的是,一个被广泛接受的理论认为齿状回执行模式分离——相似的输入产生去相关的输出。尽管这是一个活跃的研究和理论领域,但很少有逻辑严谨的论据详细阐述齿状回(DG)的编码。我们为此行为提出了一个理论上易于处理的组合模型。该模型为高度冗余、任意稀疏且去相关的输出信号提供了形式化方法。为了探索这个模型框架的价值,我们评估它对于DG编码的两个显著方面的适用性:它如何处理输入内嗅皮质区域中高度结构化的网格细胞表示以及成年神经发生的存在,成年神经发生被认为会在DG中产生异质编码。我们发现使模型适应网格细胞输入会产生与文献一致的扩展参数。此外,异质编码反映了实验观察到的活动梯度。最后,我们通过形式化嵌入将这种方法与更传统的二进制阈值神经电路模型联系起来。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验