Suppr超能文献

齿状回神经发生受损与模式分离缺陷有关:一项计算研究。

Impaired neurogenesis of the dentate gyrus is associated with pattern separation deficits: A computational study.

作者信息

Faghihi Faramarz, Moustafa Ahmed A

机构信息

* Department of Cognitive Modeling, Institute for Cognitive Science, Pardis, 303-735-3602, Iran.

† Department of Cognitive Modeling, Institute for Brain and Cognitive Science, Shahid Beheshti University, Tehran, 1983969411, Iran.

出版信息

J Integr Neurosci. 2016 Sep;15(3):277-293. doi: 10.1142/S0219635216500175. Epub 2016 Sep 21.

Abstract

The separation of input patterns received from the entorhinal cortex (EC) by the dentate gyrus (DG) is a well-known critical step of information processing in the hippocampus. Although the role of interneurons in separation pattern efficiency of the DG has been theoretically known, the balance of neurogenesis of excitatory neurons and interneurons as well as its potential role in information processing in the DG is not fully understood. In this work, we study separation efficiency of the DG for different rates of neurogenesis of interneurons and excitatory neurons using a novel computational model in which we assume an increase in the synaptic efficacy between excitatory neurons and interneurons and then its decay over time. Information processing in the EC and DG was simulated as information flow in a two layer feed-forward neural network. The neurogenesis rate was modeled as the percentage of new born neurons added to the neuronal population in each time bin. The results show an important role of an optimal neurogenesis rate of interneurons and excitatory neurons in the DG in efficient separation of inputs from the EC in pattern separation tasks. The model predicts that any deviation of the optimal values of neurogenesis rates leads to different decreased levels of the separation deficits of the DG which influences its function to encode memory.

摘要

内嗅皮质(EC)接收的输入模式经齿状回(DG)分离,是海马体信息处理中一个众所周知的关键步骤。虽然理论上已知中间神经元在DG分离模式效率中的作用,但兴奋性神经元和中间神经元神经发生的平衡及其在DG信息处理中的潜在作用尚未完全明确。在这项研究中,我们使用一种新颖的计算模型,研究了中间神经元和兴奋性神经元不同神经发生速率下DG的分离效率,该模型假设兴奋性神经元和中间神经元之间的突触效能增加,然后随时间衰减。将EC和DG中的信息处理模拟为两层前馈神经网络中的信息流。神经发生速率建模为每个时间间隔内添加到神经元群体中的新生神经元百分比。结果表明,DG中中间神经元和兴奋性神经元的最佳神经发生速率在模式分离任务中有效分离来自EC的输入方面起着重要作用。该模型预测,神经发生速率最佳值的任何偏差都会导致DG分离缺陷程度不同程度的降低,这会影响其编码记忆的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验