Spill Fabian, Weinstein Zohar B, Irani Shemirani Atena, Ho Nga, Desai Darash, Zaman Muhammad H
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biomedical Engineering, Boston University, Boston MA 02215.
Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12076-12081. doi: 10.1073/pnas.1605086113. Epub 2016 Oct 7.
The search for high-affinity aptamers for targets such as proteins, small molecules, or cancer cells remains a formidable endeavor. Systematic Evolution of Ligands by EXponential Enrichment (SELEX) offers an iterative process to discover these aptamers through evolutionary selection of high-affinity candidates from a highly diverse random pool. This randomness dictates an unknown population distribution of fitness parameters, encoded by the binding affinities, toward SELEX targets. Adding to this uncertainty, repeating SELEX under identical conditions may lead to variable outcomes. These uncertainties pose a challenge when tuning selection pressures to isolate high-affinity ligands. Here, we present a stochastic hybrid model that describes the evolutionary selection of aptamers to explore the impact of these unknowns. To our surprise, we find that even single copies of high-affinity ligands in a pool of billions can strongly influence population dynamics, yet their survival is highly dependent on chance. We perform Monte Carlo simulations to explore the impact of environmental parameters, such as the target concentration, on selection efficiency in SELEX and identify strategies to control these uncertainties to ultimately improve the outcome and speed of this time- and resource-intensive process.
寻找针对蛋白质、小分子或癌细胞等靶标的高亲和力适配体仍然是一项艰巨的任务。指数富集配体系统进化技术(SELEX)提供了一个迭代过程,通过从高度多样化的随机文库中对高亲和力候选物进行进化选择来发现这些适配体。这种随机性决定了由结合亲和力编码的、针对SELEX靶标的适应度参数的未知群体分布。除此之外,在相同条件下重复进行SELEX可能会导致不同的结果。在调整选择压力以分离高亲和力配体时,这些不确定性构成了挑战。在此,我们提出了一个随机混合模型,该模型描述了适配体的进化选择,以探究这些未知因素的影响。令我们惊讶的是,我们发现即使在数十亿个分子的文库中只有单拷贝的高亲和力配体,也能强烈影响群体动态,但其存活高度依赖于偶然性。我们进行蒙特卡罗模拟,以探究环境参数(如靶标浓度)对SELEX选择效率的影响,并确定控制这些不确定性的策略,以最终改善这个耗时且资源密集型过程的结果和速度。