Suppr超能文献

相似文献

1
Scaffoldless engineered enzyme assembly for enhanced methanol utilization.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12691-12696. doi: 10.1073/pnas.1601797113. Epub 2016 Oct 24.
2
Methanol production by reversed methylotrophy constructed in .
Biosci Biotechnol Biochem. 2020 May;84(5):1062-1068. doi: 10.1080/09168451.2020.1715202. Epub 2020 Jan 16.
3
Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion.
Chembiochem. 2018 Dec 4;19(23):2465-2471. doi: 10.1002/cbic.201800424. Epub 2018 Oct 23.
4
Engineering Escherichia coli for methanol conversion.
Metab Eng. 2015 Mar;28:190-201. doi: 10.1016/j.ymben.2014.12.008. Epub 2015 Jan 14.
5
Engineering for Poly-β-hydroxybutyrate Production from Methanol.
Bioengineering (Basel). 2023 Mar 26;10(4):415. doi: 10.3390/bioengineering10040415.
6
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Appl Microbiol Biotechnol. 2015 Dec;99(23):10163-76. doi: 10.1007/s00253-015-6906-5. Epub 2015 Aug 16.
8
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Appl Environ Microbiol. 2015 Mar;81(6):2215-25. doi: 10.1128/AEM.03110-14. Epub 2015 Jan 16.
9
Improving formaldehyde consumption drives methanol assimilation in engineered E. coli.
Nat Commun. 2018 Jun 19;9(1):2387. doi: 10.1038/s41467-018-04795-4.
10
Constructing a methanol-dependent Bacillus subtilis by engineering the methanol metabolism.
J Biotechnol. 2022 Jan 10;343:128-137. doi: 10.1016/j.jbiotec.2021.12.005. Epub 2021 Dec 11.

引用本文的文献

1
Seven critical challenges in synthetic one-carbon assimilation and their potential solutions.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf011.
2
Sustainable Bioconversion of Methanol: A Renewable Employing Novel Alcohol Oxidase and Pyruvate Aldolase.
J Agric Food Chem. 2025 Apr 16;73(15):9165-9173. doi: 10.1021/acs.jafc.4c12671. Epub 2025 Apr 2.
3
Metabolic engineering strategies for microbial utilization of methanol.
Eng Microbiol. 2023 Mar 4;3(3):100081. doi: 10.1016/j.engmic.2023.100081. eCollection 2023 Sep.
4
Bringing carbon to life via one-carbon metabolism.
Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20.
5
Application of artificial scaffold systems in microbial metabolic engineering.
Front Bioeng Biotechnol. 2023 Dec 22;11:1328141. doi: 10.3389/fbioe.2023.1328141. eCollection 2023.
6
Perspectives for Using CO as a Feedstock for Biomanufacturing of Fuels and Chemicals.
Bioengineering (Basel). 2023 Nov 26;10(12):1357. doi: 10.3390/bioengineering10121357.
7
Artificial multi-enzyme cascades and whole-cell transformation for bioconversion of C1 compounds: Advances, challenge and perspectives.
Synth Syst Biotechnol. 2023 Aug 30;8(4):578-583. doi: 10.1016/j.synbio.2023.08.008. eCollection 2023 Dec.
8
Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs.
Synth Syst Biotechnol. 2023 Jun 13;8(3):396-415. doi: 10.1016/j.synbio.2023.06.001. eCollection 2023 Sep.
9
Metabolic pathway assembly using docking domains from type I cis-AT polyketide synthases.
Nat Commun. 2022 Sep 21;13(1):5541. doi: 10.1038/s41467-022-33272-2.
10
From a Hetero- to a Methylotrophic Lifestyle: Flash Back on the Engineering Strategies to Create Synthetic Methanol-User Strains.
Front Bioeng Biotechnol. 2022 Jun 8;10:907861. doi: 10.3389/fbioe.2022.907861. eCollection 2022.

本文引用的文献

1
Correction: Recent advances in the methanol synthesis methane reforming processes.
RSC Adv. 2020 Sep 14;10(56):33962. doi: 10.1039/d0ra90096f. eCollection 2020 Sep 10.
2
Synthetic scaffolds for pathway enhancement.
Curr Opin Biotechnol. 2015 Dec;36:98-106. doi: 10.1016/j.copbio.2015.08.009. Epub 2015 Aug 29.
3
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.
Appl Microbiol Biotechnol. 2015 Dec;99(23):10163-76. doi: 10.1007/s00253-015-6906-5. Epub 2015 Aug 16.
4
Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.
Curr Opin Biotechnol. 2015 Jun;33:165-75. doi: 10.1016/j.copbio.2015.01.007. Epub 2015 Mar 19.
5
Engineering Escherichia coli for methanol conversion.
Metab Eng. 2015 Mar;28:190-201. doi: 10.1016/j.ymben.2014.12.008. Epub 2015 Jan 14.
6
Metabolic engineering of Corynebacterium glutamicum for methanol metabolism.
Appl Environ Microbiol. 2015 Mar;81(6):2215-25. doi: 10.1128/AEM.03110-14. Epub 2015 Jan 16.
7
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):15928-33. doi: 10.1073/pnas.1413470111. Epub 2014 Oct 29.
8
Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in vitro and in vivo.
Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14027-30. doi: 10.1002/anie.201405016. Epub 2014 Oct 15.
9
Biomolecular scaffolds for enhanced signaling and catalytic efficiency.
Curr Opin Biotechnol. 2014 Aug;28:59-68. doi: 10.1016/j.copbio.2013.11.007. Epub 2013 Dec 25.
10
Highly ordered protein nanorings designed by accurate control of glutathione S-transferase self-assembly.
J Am Chem Soc. 2013 Jul 31;135(30):10966-9. doi: 10.1021/ja405519s. Epub 2013 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验