Suppr超能文献

非血红素铁酶中结构和电子结构对功能的贡献。

Geometric and electronic structure contributions to function in non-heme iron enzymes.

机构信息

Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States.

出版信息

Acc Chem Res. 2013 Nov 19;46(11):2725-39. doi: 10.1021/ar400149m. Epub 2013 Sep 26.

Abstract

Mononuclear non-heme Fe (NHFe) enzymes play key roles in DNA repair, the biosynthesis of antibiotics, the response to hypoxia, cancer therapy, and many other biological processes. These enzymes catalyze a diverse range of oxidation reactions, including hydroxylation, halogenation, ring closure, desaturation, and electrophilic aromatic substitution (EAS). Most of these enzymes use an Fe(II) site to activate dioxygen, but traditional spectroscopic methods have not allowed researchers to insightfully probe these ferrous active sites. We have developed a methodology that provides detailed geometric and electronic structure insights into these NHFe(II) active sites. Using these data, we have defined a general mechanistic strategy that many of these enzymes use: they control O2 activation (and limit autoxidation and self-hydroxylation) by allowing Fe(II) coordination unsaturation only in the presence of cosubstrates. Depending on the type of enzyme, O2 activation either involves a 2e(-) reduced Fe(III)-OOH intermediate or a 4e(-) reduced Fe(IV)═O intermediate. Nuclear resonance vibrational spectroscopy (NRVS) has provided the geometric structure of these intermediates, and magnetic circular dichroism (MCD) has defined the frontier molecular orbitals (FMOs), the electronic structure that controls reactivity. This Account emphasizes that experimental spectroscopy is critical in evaluating the results of electronic structure calculations. Therefore these data are a key mechanistic bridge between structure and reactivity. For the Fe(III)-OOH intermediates, the anticancer drug activated bleomycin (BLM) acts as the non-heme Fe analog of compound 0 in heme (e.g., P450) chemistry. However BLM shows different reactivity: the low-spin (LS) Fe(III)-OOH can directly abstract a H atom from DNA. The LS and high-spin (HS) Fe(III)-OOHs have fundamentally different transition states. The LS transition state goes through a hydroxyl radical, but the HS transition state is activated for EAS without O-O cleavage. This activation is important in one class of NHFe enzymes that utilizes a HS Fe(III)-OOH intermediate in dioxygenation. For Fe(IV)═O intermediates, the LS form has a π-type FMO activated for attack perpendicular to the Fe-O bond. However, the HS form (present in the NHFe enzymes) has a π FMO activated perpendicular to the Fe-O bond and a σ FMO positioned along the Fe-O bond. For the NHFe enzymes, the presence of π and σ FMOs enables enzymatic control in determining the type of reactivity: EAS or H-atom extraction for one substrate with different enzymes and halogenation or hydroxylation for one enzyme with different substrates.

摘要

单核非血红素 Fe(NHFe)酶在 DNA 修复、抗生素生物合成、缺氧反应、癌症治疗和许多其他生物过程中发挥着关键作用。这些酶催化多种氧化反应,包括羟化、卤化、环合、去饱和和亲电芳香取代(EAS)。大多数这些酶使用 Fe(II) 位点来激活氧气,但传统的光谱方法无法让研究人员深入探究这些亚铁活性位点。我们开发了一种方法,可以提供有关这些 NHFe(II) 活性位点的详细几何和电子结构见解。使用这些数据,我们定义了许多此类酶使用的一般机制策略:它们通过仅在存在共底物的情况下允许 Fe(II) 配位不饱和来控制 O2 活化(并限制自氧化和自羟化)。根据酶的类型,O2 活化要么涉及 2e(-) 还原的 Fe(III)-OOH 中间体,要么涉及 4e(-) 还原的 Fe(IV)═O 中间体。核共振振动光谱 (NRVS) 提供了这些中间体的几何结构,而圆二色性 (MCD) 则定义了控制反应性的前线分子轨道 (FMO),即电子结构。本说明强调实验光谱在评估电子结构计算结果方面至关重要。因此,这些数据是结构与反应性之间的关键机制桥梁。对于 Fe(III)-OOH 中间体,抗癌药物激活的博来霉素 (BLM) 充当血红素(例如 P450)化学中非血红素 Fe 类似物的化合物 0。然而,BLM 表现出不同的反应性:低自旋 (LS) Fe(III)-OOH 可以直接从 DNA 中提取 H 原子。LS 和高自旋 (HS) Fe(III)-OOH 具有根本不同的过渡态。LS 过渡态经历羟基自由基,但 HS 过渡态在没有 O-O 断裂的情况下被激活进行 EAS。这种活化在一类利用 LS Fe(III)-OOH 中间体进行氧合作用的 NHFe 酶中很重要。对于 Fe(IV)═O 中间体,LS 形式具有π型 FMO,可用于垂直于 Fe-O 键的攻击。然而,HS 形式(存在于 NHFe 酶中)具有垂直于 Fe-O 键的π FMO 和沿 Fe-O 键定位的σ FMO。对于 NHFe 酶,π 和 σ FMO 的存在使酶控制能够确定反应类型:一种底物的 EAS 或 H 原子提取,对于不同的酶,一种酶的卤化或羟化作用。

相似文献

5
O Activation by Non-Heme Iron Enzymes.非血红素铁酶的激活作用。
Biochemistry. 2016 Nov 22;55(46):6363-6374. doi: 10.1021/acs.biochem.6b00635. Epub 2016 Nov 14.

引用本文的文献

2
Revealing the Catalytic Strategy of FTO.揭示FTO的催化策略。
Chem Catal. 2023 Sep 21;3(9). doi: 10.1016/j.checat.2023.100732. Epub 2023 Aug 28.

本文引用的文献

9
Further insights into the mechanism of the reaction of activated bleomycin with DNA.对活化博来霉素与DNA反应机制的进一步深入了解。
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13241-5. doi: 10.1073/pnas.0806378105. Epub 2008 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验