Suppr超能文献

使用弱传播性疫苗根除传染病。

Eradicating infectious disease using weakly transmissible vaccines.

作者信息

Nuismer Scott L, Althouse Benjamin M, May Ryan, Bull James J, Stromberg Sean P, Antia Rustom

机构信息

Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA

Department of Mathematics, University of Idaho, Moscow, ID 83844, USA.

出版信息

Proc Biol Sci. 2016 Oct 26;283(1841). doi: 10.1098/rspb.2016.1903.

Abstract

Viral vaccines have had remarkable positive impacts on human health as well as the health of domestic animal populations. Despite impressive vaccine successes, however, many infectious diseases cannot yet be efficiently controlled or eradicated through vaccination, often because it is impossible to vaccinate a sufficient proportion of the population. Recent advances in molecular biology suggest that the centuries-old method of individual-based vaccine delivery may be on the cusp of a major revolution. Specifically, genetic engineering brings to life the possibility of a live, transmissible vaccine. Unfortunately, releasing a highly transmissible vaccine poses substantial evolutionary risks, including reversion to high virulence as has been documented for the oral polio vaccine. An alternative, and far safer approach, is to rely on genetically engineered and weakly transmissible vaccines that have reduced scope for evolutionary reversion. Here, we use mathematical models to evaluate the potential efficacy of such weakly transmissible vaccines. Our results demonstrate that vaccines with even a modest ability to transmit can significantly lower the incidence of infectious disease and facilitate eradication efforts. Consequently, weakly transmissible vaccines could provide an important tool for controlling infectious disease in wild and domestic animal populations and for reducing the risks of emerging infectious disease in humans.

摘要

病毒疫苗对人类健康以及家畜群体的健康都产生了显著的积极影响。然而,尽管疫苗取得了令人瞩目的成功,但许多传染病仍无法通过接种疫苗得到有效控制或根除,这通常是因为无法为足够比例的人群接种疫苗。分子生物学的最新进展表明,已有数百年历史的基于个体的疫苗接种方法可能正处于一场重大变革的边缘。具体而言,基因工程使活的、可传播的疫苗成为可能。不幸的是,释放一种高度可传播的疫苗会带来巨大的进化风险,包括像口服脊髓灰质炎疫苗那样出现向高毒力的逆转。一种替代方法,也是更为安全的方法,是依靠基因工程改造的、传播能力较弱的疫苗,这类疫苗发生进化逆转的可能性较小。在此,我们使用数学模型来评估此类弱传播性疫苗的潜在效力。我们的结果表明,即使是具有适度传播能力的疫苗也能显著降低传染病的发病率,并有助于根除工作。因此,弱传播性疫苗可为控制野生动物和家畜群体中的传染病以及降低人类新发传染病风险提供重要工具。

相似文献

1
Eradicating infectious disease using weakly transmissible vaccines.
Proc Biol Sci. 2016 Oct 26;283(1841). doi: 10.1098/rspb.2016.1903.
2
Transmissible Viral Vaccines.
Trends Microbiol. 2018 Jan;26(1):6-15. doi: 10.1016/j.tim.2017.09.007. Epub 2017 Oct 13.
3
Evolution and containment of transmissible recombinant vector vaccines.
Evol Appl. 2019 Jun 12;12(8):1595-1609. doi: 10.1111/eva.12806. eCollection 2019 Sep.
4
Transmissible vaccines whose dissemination rates vary through time, with applications to wildlife.
Vaccine. 2019 Feb 21;37(9):1153-1159. doi: 10.1016/j.vaccine.2019.01.018. Epub 2019 Jan 25.
5
Evaluating the promise of recombinant transmissible vaccines.
Vaccine. 2018 Jan 29;36(5):675-682. doi: 10.1016/j.vaccine.2017.12.037. Epub 2017 Dec 24.
6
Eradicating polio: how the world's pediatricians can help stop this crippling illness forever.
Pediatrics. 2015 Jan;135(1):196-202. doi: 10.1542/peds.2014-3163.
7
Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it?
Virus Evol. 2015 Jan;1(1). doi: 10.1093/ve/vev005. Epub 2015 Jan 1.
9
Engineering DNA vaccines against infectious diseases.
Acta Biomater. 2018 Oct 15;80:31-47. doi: 10.1016/j.actbio.2018.08.033. Epub 2018 Aug 31.
10
Controlling epidemics with transmissible vaccines.
PLoS One. 2018 May 10;13(5):e0196978. doi: 10.1371/journal.pone.0196978. eCollection 2018.

引用本文的文献

1
Design of field trials for the evaluation of transmissible vaccines in animal populations.
PLoS Comput Biol. 2025 Feb 3;21(2):e1012779. doi: 10.1371/journal.pcbi.1012779. eCollection 2025 Feb.
2
Fine-tuning the evolutionary stability of recombinant herpesviral transmissible vaccines.
Proc Biol Sci. 2024 Nov;291(2034):20241827. doi: 10.1098/rspb.2024.1827. Epub 2024 Nov 13.
3
Recombinant transmissible vaccines will be intrinsically contained despite the ability to superinfect.
Expert Rev Vaccines. 2024 Jan-Dec;23(1):294-302. doi: 10.1080/14760584.2024.2320845. Epub 2024 Feb 28.
4
Optimizing the delivery of self-disseminating vaccines in fluctuating wildlife populations.
PLoS Negl Trop Dis. 2023 Aug 18;17(8):e0011018. doi: 10.1371/journal.pntd.0011018. eCollection 2023 Aug.
6
Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines.
Proc Natl Acad Sci U S A. 2022 Jan 25;119(4). doi: 10.1073/pnas.2108610119.
7
Reviewing the ecological evidence base for management of emerging tropical zoonoses: Kyasanur Forest Disease in India as a case study.
PLoS Negl Trop Dis. 2021 Apr 1;15(4):e0009243. doi: 10.1371/journal.pntd.0009243. eCollection 2021 Apr.
8
Epidemiology and biology of a herpesvirus in rabies endemic vampire bat populations.
Nat Commun. 2020 Nov 23;11(1):5951. doi: 10.1038/s41467-020-19832-4.
9
Bayesian estimation of Lassa virus epidemiological parameters: Implications for spillover prevention using wildlife vaccination.
PLoS Negl Trop Dis. 2020 Sep 21;14(9):e0007920. doi: 10.1371/journal.pntd.0007920. eCollection 2020 Sep.
10

本文引用的文献

1
Evolutionary reversion of live viral vaccines: Can genetic engineering subdue it?
Virus Evol. 2015 Jan;1(1). doi: 10.1093/ve/vev005. Epub 2015 Jan 1.
2
Self-disseminating vaccines for emerging infectious diseases.
Expert Rev Vaccines. 2016;15(1):31-9. doi: 10.1586/14760584.2016.1106942. Epub 2015 Nov 2.
3
Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions.
PLoS One. 2015 Jul 21;10(7):e0131398. doi: 10.1371/journal.pone.0131398. eCollection 2015.
4
The evolution of poxvirus vaccines.
Viruses. 2015 Apr 7;7(4):1726-803. doi: 10.3390/v7041726.
5
A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose.
Vaccine. 2015 May 5;33(19):2261-2266. doi: 10.1016/j.vaccine.2015.03.029. Epub 2015 Mar 25.
6
Vaccine-derived polioviruses.
J Infect Dis. 2014 Nov 1;210 Suppl 1:S283-93. doi: 10.1093/infdis/jiu295.
7
Epidemic cycles driven by host behaviour.
J R Soc Interface. 2014 Oct 6;11(99). doi: 10.1098/rsif.2014.0575.
8
Estimating epidemiological parameters for bovine tuberculosis in British cattle using a Bayesian partial-likelihood approach.
Proc Biol Sci. 2014 Apr 9;281(1783):20140248. doi: 10.1098/rspb.2014.0248. Print 2014 May 22.
10
The timing and targeting of treatment in influenza pandemics influences the emergence of resistance in structured populations.
PLoS Comput Biol. 2013;9(2):e1002912. doi: 10.1371/journal.pcbi.1002912. Epub 2013 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验