Suppr超能文献

在哺乳动物细胞中利用dCas9靶向体细胞超突变进行定向进化。

Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells.

作者信息

Hess Gaelen T, Frésard Laure, Han Kyuho, Lee Cameron H, Li Amy, Cimprich Karlene A, Montgomery Stephen B, Bassik Michael C

机构信息

Department of Genetics, Stanford University, Stanford, California, USA.

Department of Pathology, Stanford University, Stanford, California, USA.

出版信息

Nat Methods. 2016 Dec;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub 2016 Oct 31.

Abstract

Engineering and study of protein function by directed evolution has been limited by the technical requirement to use global mutagenesis or introduce DNA libraries. Here, we develop CRISPR-X, a strategy to repurpose the somatic hypermutation machinery for protein engineering in situ. Using catalytically inactive dCas9 to recruit variants of cytidine deaminase (AID) with MS2-modified sgRNAs, we can specifically mutagenize endogenous targets with limited off-target damage. This generates diverse libraries of localized point mutations and can target multiple genomic locations simultaneously. We mutagenize GFP and select for spectrum-shifted variants, including EGFP. Additionally, we mutate the target of the cancer therapeutic bortezomib, PSMB5, and identify known and novel mutations that confer bortezomib resistance. Finally, using a hyperactive AID variant, we mutagenize loci both upstream and downstream of transcriptional start sites. These experiments illustrate a powerful approach to create complex libraries of genetic variants in native context, which is broadly applicable to investigate and improve protein function.

摘要

通过定向进化对蛋白质功能进行工程改造和研究一直受到使用全局诱变或引入DNA文库的技术要求的限制。在此,我们开发了CRISPR-X,这是一种将体细胞超突变机制重新用于原位蛋白质工程的策略。使用催化失活的dCas9与MS2修饰的sgRNA招募胞苷脱氨酶(AID)变体,我们可以特异性地诱变内源性靶点,同时减少脱靶损伤。这产生了多样化的局部点突变文库,并可同时靶向多个基因组位置。我们诱变绿色荧光蛋白(GFP)并筛选光谱偏移变体,包括增强型绿色荧光蛋白(EGFP)。此外,我们对癌症治疗药物硼替佐米的靶点PSMB5进行诱变,并鉴定出赋予硼替佐米抗性的已知和新突变。最后,使用一种高活性AID变体,我们对转录起始位点上游和下游的基因座进行诱变。这些实验说明了一种在天然环境中创建复杂遗传变异文库的强大方法,该方法广泛适用于研究和改善蛋白质功能。

相似文献

1
Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells.
Nat Methods. 2016 Dec;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub 2016 Oct 31.
2
Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells.
Nat Methods. 2016 Dec;13(12):1029-1035. doi: 10.1038/nmeth.4027. Epub 2016 Oct 10.
3
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
Nat Biotechnol. 2017 May;35(5):441-443. doi: 10.1038/nbt.3833. Epub 2017 Mar 27.
4
Evaluation of sgRNA target sites for CRISPR-mediated repression of TP53.
PLoS One. 2014 Nov 14;9(11):e113232. doi: 10.1371/journal.pone.0113232. eCollection 2014.
5
All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
Methods Mol Biol. 2017;1498:41-56. doi: 10.1007/978-1-4939-6472-7_4.
6
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements.
Nat Methods. 2015 Dec;12(12):1143-9. doi: 10.1038/nmeth.3630. Epub 2015 Oct 26.
7
Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing.
Mol Cell. 2021 Oct 21;81(20):4333-4345.e4. doi: 10.1016/j.molcel.2021.08.008. Epub 2021 Sep 3.
8
Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs.
Nat Methods. 2016 Oct;13(10):852-4. doi: 10.1038/nmeth.3972. Epub 2016 Sep 5.
9
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11870-5. doi: 10.1073/pnas.1515692112. Epub 2015 Aug 31.
10
CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in .
ACS Synth Biol. 2020 Jul 17;9(7):1781-1789. doi: 10.1021/acssynbio.0c00151. Epub 2020 Jul 1.

引用本文的文献

2
CRISPR/Cas9 technology in tumor research and drug development application progress and future prospects.
Front Pharmacol. 2025 Jul 8;16:1552741. doi: 10.3389/fphar.2025.1552741. eCollection 2025.
4
Optimizing a human monoclonal antibody for better neutralization of SARS-CoV-2.
Nat Commun. 2025 Jul 4;16(1):6195. doi: 10.1038/s41467-025-61472-z.
5
Toward optimizing diversifying base editors for high-throughput mutational scanning studies.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf620.
7
From Code to Life: The AI-Driven Revolution in Genome Editing.
Adv Sci (Weinh). 2025 Aug;12(30):e17029. doi: 10.1002/advs.202417029. Epub 2025 Jun 19.
8
Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation.
Genome Biol. 2025 Jun 12;26(1):164. doi: 10.1186/s13059-025-03640-4.

本文引用的文献

1
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems.
Science. 2016 Sep 16;353(6305). doi: 10.1126/science.aaf8729. Epub 2016 Aug 4.
2
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.
Nature. 2016 May 19;533(7603):420-4. doi: 10.1038/nature17946. Epub 2016 Apr 20.
3
Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow.
Nat Biotechnol. 2016 May;34(5):528-30. doi: 10.1038/nbt.3526. Epub 2016 Apr 18.
4
Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification.
Nat Chem Biol. 2016 May;12(5):361-6. doi: 10.1038/nchembio.2050. Epub 2016 Mar 28.
5
High-throughput mapping of regulatory DNA.
Nat Biotechnol. 2016 Feb;34(2):167-74. doi: 10.1038/nbt.3468. Epub 2016 Jan 25.
6
Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9.
Nat Biotechnol. 2016 Feb;34(2):192-8. doi: 10.1038/nbt.3450. Epub 2016 Jan 11.
7
Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes.
Cell. 2015 Nov 19;163(5):1124-1137. doi: 10.1016/j.cell.2015.10.042. Epub 2015 Nov 12.
8
BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis.
Nature. 2015 Nov 12;527(7577):192-7. doi: 10.1038/nature15521. Epub 2015 Sep 16.
9
Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
Nat Biotechnol. 2015 Sep;33(9):985-989. doi: 10.1038/nbt.3290. Epub 2015 Jun 29.
10
Functional annotation of native enhancers with a Cas9-histone demethylase fusion.
Nat Methods. 2015 May;12(5):401-403. doi: 10.1038/nmeth.3325. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验