Chenaux George, Matt Lucas, Hill Travis C, Kaur Inderpreet, Liu Xiao-Bo, Kirk Lyndsey M, Speca David J, McMahon Samuel A, Zito Karen, Hell Johannes W, Díaz Elva
Department of Pharmacology, University of California, Davis, California 95616; Center for Neuroscience, University of California, Davis, California 95616.
Department of Pharmacology, University of California , Davis, California 95616.
eNeuro. 2016 Oct 21;3(5). doi: 10.1523/ENEURO.0130-16.2016. eCollection 2016 Sep-Oct.
Modification of the strength of excitatory synaptic connections is a fundamental mechanism by which neural circuits are refined during development and learning. Synapse Differentiation Induced Gene 1 (SynDIG1) has been shown to play a key role in regulating synaptic strength . Here, we investigated the role of SynDIG1 in mice with a disruption of the gene rather than use an alternate loxP-flanked conditional mutant that we find retains a partial protein product. The gene-trap insertion with a reporter cassette mutant mice shows that the promoter is active during embryogenesis in the retina with some activity in the brain, and postnatally in the mouse hippocampus, cortex, hindbrain, and spinal cord. Ultrastructural analysis of the hippocampal CA1 region shows a decrease in the average PSD length of synapses and a decrease in the number of synapses with a mature phenotype. Intriguingly, the total synapse number appears to be increased in mutant mice. Electrophysiological analyses show a decrease in AMPA and NMDA receptor function in -deficient hippocampal neurons. Glutamate stimulation of individual dendritic spines in hippocampal slices from SynDIG1-deficient mice reveals increased short-term structural plasticity. Notably, the overall levels of PSD-95 or glutamate receptors enriched in postsynaptic biochemical fractions remain unaltered; however, activity-dependent synapse development is strongly compromised upon the loss of SynDIG1, supporting its importance for excitatory synapse maturation. Together, these data are consistent with a model in which SynDIG1 regulates the maturation of excitatory synapse structure and function in the mouse hippocampus .
兴奋性突触连接强度的改变是神经回路在发育和学习过程中得以完善的一种基本机制。突触分化诱导基因1(SynDIG1)已被证明在调节突触强度中起关键作用。在此,我们研究了基因敲除小鼠中SynDIG1的作用,而不是使用我们发现会保留部分蛋白质产物的另一种loxP侧翼条件突变体。带有报告盒突变小鼠的基因陷阱插入显示,该启动子在胚胎期视网膜中具有活性,在大脑中也有一定活性,出生后在小鼠海马体、皮质、后脑和脊髓中也有活性。海马体CA1区的超微结构分析显示,突触的平均突触后致密部(PSD)长度减少,具有成熟表型的突触数量减少。有趣的是,突变小鼠中的总突触数量似乎增加了。电生理分析显示,缺乏SynDIG1的海马神经元中AMPA和NMDA受体功能下降。对来自SynDIG1缺陷小鼠的海马切片中单个树突棘进行谷氨酸刺激,发现短期结构可塑性增加。值得注意的是,突触后生化组分中富集的PSD-95或谷氨酸受体的总体水平保持不变;然而,SynDIG1缺失会严重损害依赖活动的突触发育,这支持了其对兴奋性突触成熟的重要性。总之,这些数据与SynDIG1调节小鼠海马体中兴奋性突触结构和功能成熟的模型一致。