Suppr超能文献

损伤诱导的ctgfa指导斑马鱼的神经胶质桥接和脊髓再生。

Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.

作者信息

Mokalled Mayssa H, Patra Chinmoy, Dickson Amy L, Endo Toyokazu, Stainier Didier Y R, Poss Kenneth D

机构信息

Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.

Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.

出版信息

Science. 2016 Nov 4;354(6312):630-634. doi: 10.1126/science.aaf2679.

Abstract

Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration. We performed a genome-wide profiling screen for secreted factors that are up-regulated during zebrafish spinal cord regeneration. We found that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupted spinal cord repair, and transgenic ctgfa overexpression or local delivery of human CTGF recombinant protein accelerated bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration.

摘要

与哺乳动物不同,斑马鱼在严重脊髓损伤后能有效地再生功能性神经系统组织。胶质瘢痕形成是哺乳动物脊髓修复的障碍,而斑马鱼中的胶质细胞会在切断的脊髓组织上形成一座桥并促进再生。我们针对斑马鱼脊髓再生过程中上调的分泌因子进行了全基因组分析筛选。我们发现,结缔组织生长因子a(ctgfa)在参与初始搭桥事件的胶质细胞内及周围被诱导表达。ctgfa的突变会破坏脊髓修复,而ctgfa的转基因过表达或人CTGF重组蛋白的局部递送则加速了搭桥和功能再生。我们的研究表明,CTGF对于刺激胶质搭桥和自然脊髓再生是必要且充分的。

相似文献

1
Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
Science. 2016 Nov 4;354(6312):630-634. doi: 10.1126/science.aaf2679.
2
Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.
3
Localized EMT reprograms glial progenitors to promote spinal cord repair.
Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.
4
In toto imaging of glial JNK signaling during larval zebrafish spinal cord regeneration.
Development. 2023 Dec 15;150(24). doi: 10.1242/dev.202076. Epub 2023 Dec 11.
5
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish.
J Neurosci. 2012 May 30;32(22):7477-92. doi: 10.1523/JNEUROSCI.0758-12.2012.
6
Wnt/β-catenin signaling promotes regeneration after adult zebrafish spinal cord injury.
Biochem Biophys Res Commun. 2016 Sep 2;477(4):952-956. doi: 10.1016/j.bbrc.2016.07.006. Epub 2016 Jul 4.
7
Spinal Cord Injury and Assays for Regeneration.
Methods Mol Biol. 2024;2707:215-222. doi: 10.1007/978-1-0716-3401-1_14.
9
Neural cells and their progenitors in regenerating zebrafish spinal cord.
Int J Dev Biol. 2020;64(4-5-6):353-366. doi: 10.1387/ijdb.190130sg.
10
Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
PLoS One. 2015 Dec 2;10(12):e0143595. doi: 10.1371/journal.pone.0143595. eCollection 2015.

引用本文的文献

1
F-box/LRR-repeat protein 12 reorchestrated microglia to inhibit scarring and achieve adult spinal cord injury repair.
Signal Transduct Target Ther. 2025 Aug 20;10(1):259. doi: 10.1038/s41392-025-02354-0.
2
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
3
Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model.
Dev Biol. 2025 Jul 3;526:111-127. doi: 10.1016/j.ydbio.2025.07.003.
4
Animal Models of Spinal Cord Injury.
Biomedicines. 2025 Jun 10;13(6):1427. doi: 10.3390/biomedicines13061427.
5
Sequential activation of transcription factors promotes liver regeneration through specific and developmental enhancers.
Cell Genom. 2025 Jul 9;5(7):100887. doi: 10.1016/j.xgen.2025.100887. Epub 2025 May 22.
6
A single-cell landscape of the regenerating spinal cord of zebrafish.
Neural Regen Res. 2026 Feb 1;21(2):780-789. doi: 10.4103/NRR.NRR-D-24-01163. Epub 2025 Apr 30.
7
Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice.
BMC Biol. 2025 Apr 30;23(1):115. doi: 10.1186/s12915-025-02203-0.
9
Comparison of Spinal Cord Regeneration Capacity in Zebrafish and Medaka.
Neurochem Res. 2025 Apr 25;50(3):153. doi: 10.1007/s11064-025-04389-9.
10
Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going?
N Am Spine Soc J. 2025 Mar 5;22:100601. doi: 10.1016/j.xnsj.2025.100601. eCollection 2025 Jun.

本文引用的文献

1
Astrocyte scar formation aids central nervous system axon regeneration.
Nature. 2016 Apr 14;532(7598):195-200. doi: 10.1038/nature17623. Epub 2016 Mar 30.
2
Efficient design and assembly of custom TALENs using the Golden Gate platform.
Methods Mol Biol. 2015;1239:133-59. doi: 10.1007/978-1-4939-1862-1_7.
4
Glial scar and immune cell involvement in tissue remodeling and repair following acute CNS injuries.
Glia. 2014 Nov;62(11):1895-904. doi: 10.1002/glia.22676. Epub 2014 Apr 23.
5
Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration.
Dev Biol. 2013 Oct 15;382(2):427-35. doi: 10.1016/j.ydbio.2013.08.012. Epub 2013 Aug 26.
6
Syntenin-a promotes spinal cord regeneration following injury in adult zebrafish.
Eur J Neurosci. 2013 Jul;38(2):2280-9. doi: 10.1111/ejn.12222. Epub 2013 Apr 22.
7
Proteolytic processing of connective tissue growth factor in normal ocular tissues and during corneal wound healing.
Invest Ophthalmol Vis Sci. 2012 Dec 13;53(13):8093-103. doi: 10.1167/iovs.12-10419.
8
Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish.
J Neurosci. 2012 May 30;32(22):7477-92. doi: 10.1523/JNEUROSCI.0758-12.2012.
9
Fibronectin inhibits chronic pain development after spinal cord injury.
J Neurotrauma. 2012 Feb 10;29(3):589-99. doi: 10.1089/neu.2011.2059. Epub 2012 Jan 13.
10
The regenerative capacity of zebrafish reverses cardiac failure caused by genetic cardiomyocyte depletion.
Development. 2011 Aug;138(16):3421-30. doi: 10.1242/dev.068601. Epub 2011 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验