Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.
Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.
与哺乳动物不同,成年斑马鱼在发生严重的脊髓损伤后会自发恢复。虽然反应性神经胶质增生是哺乳动物脊髓修复的障碍,但斑马鱼的神经胶质细胞在损伤后会产生促再生的桥接功能。在这里,我们进行了遗传谱系追踪、调控序列评估和诱导性细胞消融,以确定指导成年斑马鱼脊髓损伤后神经胶质细胞分子和细胞反应的机制。利用新生成的 CreERT2 转基因系,我们表明,指导桥接神经胶质标记物 ctgfa 表达的细胞在损伤后产生再生神经胶质,对神经元或少突胶质细胞谱系的贡献可以忽略不计。ctgfa 基因上游的 1kb 序列足以在损伤后早期桥接神经胶质中指导表达。最后,使用转基因硝基还原酶策略消融表达 ctgfa 的细胞会损害神经胶质桥接,并影响损伤后的游泳行为恢复。这项研究确定了先天脊髓再生过程中神经胶质细胞的关键调控特征、细胞后代和需求。
Development. 2023-5-15
Exp Neurol. 2014-4-8
Int J Mol Sci. 2023-3-30
Int J Dev Biol. 2020
Development. 2025-10-15
Neural Regen Res. 2026-2-1
Neural Regen Res. 2026-2-1
Adv Neurobiol. 2024
J Vis Exp. 2021-11-12
G3 (Bethesda). 2021-8-7
Trends Cancer. 2020-9
Nat Rev Mol Cell Biol. 2019-2