Suppr超能文献

祖细胞衍生的神经胶质细胞是斑马鱼脊髓再生所必需的。

Progenitor-derived glia are required for spinal cord regeneration in zebrafish.

机构信息

Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.

Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.

出版信息

Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.

Abstract

Unlike mammals, adult zebrafish undergo spontaneous recovery after major spinal cord injury. Whereas reactive gliosis presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish elicit pro-regenerative bridging functions after injury. Here, we perform genetic lineage tracing, assessment of regulatory sequences and inducible cell ablation to define mechanisms that direct the molecular and cellular responses of glial cells after spinal cord injury in adult zebrafish. Using a newly generated CreERT2 transgenic line, we show that the cells directing expression of the bridging glial marker ctgfa give rise to regenerating glia after injury, with negligible contribution to either neuronal or oligodendrocyte lineages. A 1 kb sequence upstream of the ctgfa gene was sufficient to direct expression in early bridging glia after injury. Finally, ablation of ctgfa-expressing cells using a transgenic nitroreductase strategy impaired glial bridging and recovery of swim behavior after injury. This study identifies key regulatory features, cellular progeny, and requirements of glial cells during innate spinal cord regeneration.

摘要

与哺乳动物不同,成年斑马鱼在发生严重的脊髓损伤后会自发恢复。虽然反应性神经胶质增生是哺乳动物脊髓修复的障碍,但斑马鱼的神经胶质细胞在损伤后会产生促再生的桥接功能。在这里,我们进行了遗传谱系追踪、调控序列评估和诱导性细胞消融,以确定指导成年斑马鱼脊髓损伤后神经胶质细胞分子和细胞反应的机制。利用新生成的 CreERT2 转基因系,我们表明,指导桥接神经胶质标记物 ctgfa 表达的细胞在损伤后产生再生神经胶质,对神经元或少突胶质细胞谱系的贡献可以忽略不计。ctgfa 基因上游的 1kb 序列足以在损伤后早期桥接神经胶质中指导表达。最后,使用转基因硝基还原酶策略消融表达 ctgfa 的细胞会损害神经胶质桥接,并影响损伤后的游泳行为恢复。这项研究确定了先天脊髓再生过程中神经胶质细胞的关键调控特征、细胞后代和需求。

相似文献

1
Progenitor-derived glia are required for spinal cord regeneration in zebrafish.
Development. 2023 May 15;150(10). doi: 10.1242/dev.201162. Epub 2023 May 22.
2
Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.
Science. 2016 Nov 4;354(6312):630-634. doi: 10.1126/science.aaf2679.
3
Localized EMT reprograms glial progenitors to promote spinal cord repair.
Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.
4
Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury.
Dev Biol. 2015 Jul 1;403(1):15-21. doi: 10.1016/j.ydbio.2015.03.025. Epub 2015 Apr 14.
5
Radial glial progenitors repair the zebrafish spinal cord following transection.
Exp Neurol. 2014 Jun;256:81-92. doi: 10.1016/j.expneurol.2014.03.017. Epub 2014 Apr 8.
6
Dtx2 Deficiency Induces Ependymo-Radial Glial Cell Proliferation and Improves Spinal Cord Motor Function Recovery.
Stem Cells Dev. 2024 Oct;33(19-20):540-550. doi: 10.1089/scd.2023.0247. Epub 2024 Aug 9.
7
Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
PLoS One. 2015 Dec 2;10(12):e0143595. doi: 10.1371/journal.pone.0143595. eCollection 2015.
8
Macrophage-Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish.
Int J Mol Sci. 2023 Mar 30;24(7):6483. doi: 10.3390/ijms24076483.
10
Neural cells and their progenitors in regenerating zebrafish spinal cord.
Int J Dev Biol. 2020;64(4-5-6):353-366. doi: 10.1387/ijdb.190130sg.

引用本文的文献

2
Mechanisms underpinning spontaneous spinal cord regeneration.
Development. 2025 Oct 15;152(20). doi: 10.1242/dev.204790. Epub 2025 Jul 30.
3
Effects of age on the response to spinal cord injury: optimizing the larval zebrafish model.
Dev Biol. 2025 Jul 3;526:111-127. doi: 10.1016/j.ydbio.2025.07.003.
4
A single-cell landscape of the regenerating spinal cord of zebrafish.
Neural Regen Res. 2026 Feb 1;21(2):780-789. doi: 10.4103/NRR.NRR-D-24-01163. Epub 2025 Apr 30.
5
Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice.
BMC Biol. 2025 Apr 30;23(1):115. doi: 10.1186/s12915-025-02203-0.
6
Zebrafish optic nerve regeneration involves resident and retinal oligodendrocytes.
Neural Regen Res. 2026 Feb 1;21(2):811-820. doi: 10.4103/NRR.NRR-D-24-00621. Epub 2024 Oct 22.
7
Protocol for whole-mount preparation, clearing, and visualization of the adult zebrafish spinal cord structures.
STAR Protoc. 2024 Dec 20;5(4):103491. doi: 10.1016/j.xpro.2024.103491. Epub 2024 Dec 9.
9
Astrocyte-Neuron Interactions in Spinal Cord Injury.
Adv Neurobiol. 2024;39:213-231. doi: 10.1007/978-3-031-64839-7_9.
10

本文引用的文献

1
Myostatin is a negative regulator of adult neurogenesis after spinal cord injury in zebrafish.
Cell Rep. 2022 Nov 22;41(8):111705. doi: 10.1016/j.celrep.2022.111705.
2
Assessment of Swim Endurance and Swim Behavior in Adult Zebrafish.
J Vis Exp. 2021 Nov 12(177). doi: 10.3791/63240.
3
Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish.
G3 (Bethesda). 2021 Aug 7;11(8). doi: 10.1093/g3journal/jkab089.
4
Localized EMT reprograms glial progenitors to promote spinal cord repair.
Dev Cell. 2021 Mar 8;56(5):613-626.e7. doi: 10.1016/j.devcel.2021.01.017. Epub 2021 Feb 19.
5
Emerging Mechanisms by which EMT Programs Control Stemness.
Trends Cancer. 2020 Sep;6(9):775-780. doi: 10.1016/j.trecan.2020.03.011. Epub 2020 Apr 17.
6
BACH1 Promotes Pancreatic Cancer Metastasis by Repressing Epithelial Genes and Enhancing Epithelial-Mesenchymal Transition.
Cancer Res. 2020 Mar 15;80(6):1279-1292. doi: 10.1158/0008-5472.CAN-18-4099. Epub 2020 Jan 9.
7
BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition.
Cancer Lett. 2019 Mar 31;445:45-56. doi: 10.1016/j.canlet.2019.01.003. Epub 2019 Jan 14.
8
Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves.
Glia. 2019 Mar;67(3):421-437. doi: 10.1002/glia.23532. Epub 2019 Jan 11.
9
New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer.
Nat Rev Mol Cell Biol. 2019 Feb;20(2):69-84. doi: 10.1038/s41580-018-0080-4.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验