Suppr超能文献

丹麦重症监护数据库。

The Danish Intensive Care Database.

作者信息

Christiansen Christian Fynbo, Møller Morten Hylander, Nielsen Henrik, Christensen Steffen

机构信息

Department of Clinical Epidemiology, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus.

Department of Intensive Care 4131, Copenhagen University Hospital Rigshospitalet, Copenhagen.

出版信息

Clin Epidemiol. 2016 Oct 25;8:525-530. doi: 10.2147/CLEP.S99476. eCollection 2016.

Abstract

AIM OF DATABASE

The aim of this database is to improve the quality of care in Danish intensive care units (ICUs) by monitoring key domains of intensive care and to compare these with predefined standards.

STUDY POPULATION

The Danish Intensive Care Database (DID) was established in 2007 and includes virtually all ICU admissions in Denmark since 2005. The DID obtains data from the Danish National Registry of Patients, with complete follow-up through the Danish Civil Registration System.

MAIN VARIABLES

For each ICU admission, the DID includes data on the date and time of ICU admission, type of admission, organ supportive treatments, date and time of discharge, status at discharge, and mortality up to 90 days after admission. Descriptive variables include age, sex, Charlson comorbidity index score, and, since 2010, the Simplified Acute Physiology Score (SAPS) II. The variables are recorded with 90%-100% completeness in the recent years, except for SAPS II score, which is 73%-76% complete. The DID currently includes five quality indicators. Process indicators include out-of-hour discharge and transfer to other ICUs for capacity reasons. Outcome indicators include ICU readmission within 48 hours and standardized mortality ratios for death within 30 days after admission using case-mix adjustment (initially using age, sex, and comorbidity level, and, since 2013, using SAPS II) for all patients and for patients with septic shock.

DESCRIPTIVE DATA

The DID currently includes 335,564 ICU admissions during 2005-2015 (average 31,958 ICU admissions per year).

CONCLUSION

The DID provides a valuable data source for quality monitoring and improvement, as well as for research.

摘要

数据库目的

该数据库旨在通过监测重症监护的关键领域来提高丹麦重症监护病房(ICU)的护理质量,并将这些领域与预定义标准进行比较。

研究人群

丹麦重症监护数据库(DID)于2007年建立,涵盖了自2005年以来丹麦几乎所有的ICU入院病例。DID从丹麦国家患者登记处获取数据,并通过丹麦民事登记系统进行完整随访。

主要变量

对于每例ICU入院病例,DID包含ICU入院日期和时间、入院类型、器官支持治疗、出院日期和时间、出院状态以及入院后90天内的死亡率等数据。描述性变量包括年龄、性别、查尔森合并症指数评分,自2010年起还包括简化急性生理学评分(SAPS)II。近年来,除SAPS II评分的完整性为73%-76%外,其他变量的记录完整性为90%-100%。DID目前包括五个质量指标。过程指标包括非工作时间出院以及因容量原因转至其他ICU。结果指标包括48小时内再次入住ICU以及使用病例组合调整(最初使用年龄、性别和合并症水平,自2013年起使用SAPS II)计算的入院后30天内所有患者及感染性休克患者的标准化死亡率。

描述性数据

DID目前包括2005 - 2015年期间的335,564例ICU入院病例(平均每年31,958例ICU入院病例)。

结论

DID为质量监测与改进以及研究提供了宝贵的数据源。

相似文献

1
The Danish Intensive Care Database.
Clin Epidemiol. 2016 Oct 25;8:525-530. doi: 10.2147/CLEP.S99476. eCollection 2016.
3
Critical care in the emergency department: A physiologic assessment and outcome evaluation.
Acad Emerg Med. 2000 Dec;7(12):1354-61. doi: 10.1111/j.1553-2712.2000.tb00492.x.
4
[Eleven years of core data set in intensive care medicine. Severity of disease and workload are increasing].
Anaesthesist. 2014 Dec;63(12):942-50. doi: 10.1007/s00101-014-2389-5. Epub 2014 Nov 8.
5
A model to predict short-term death or readmission after intensive care unit discharge.
J Crit Care. 2012 Aug;27(4):422.e1-9. doi: 10.1016/j.jcrc.2011.08.003. Epub 2011 Dec 14.
6
The SAPS 3 score as a predictor of hospital mortality in a South African tertiary intensive care unit: A prospective cohort study.
PLoS One. 2020 May 21;15(5):e0233317. doi: 10.1371/journal.pone.0233317. eCollection 2020.
7
The Danish database for acute and emergency hospital contacts.
Clin Epidemiol. 2016 Oct 25;8:469-474. doi: 10.2147/CLEP.S99505. eCollection 2016.
9
Rating the quality of intensive care units: is it a function of the intensive care unit scoring system?
Crit Care Med. 2002 Sep;30(9):1976-82. doi: 10.1097/00003246-200209000-00005.

引用本文的文献

2
ABO Blood Type and Short-Term Mortality in Patients With Infection-Associated Disseminated Intravascular Coagulation.
Eur J Haematol. 2025 Feb;114(2):285-292. doi: 10.1111/ejh.14329. Epub 2024 Oct 28.
3
Epidemiology of Renal Replacement Therapy for Critically Ill Patients across Seven Health Jurisdictions.
Am J Nephrol. 2024;55(5):539-550. doi: 10.1159/000539811. Epub 2024 Jun 18.
9
Socioeconomic Disparity Trends in End-of-Life Care for Cancer and Non-Cancer Patients: Are We Closing the Gap?
Clin Epidemiol. 2022 May 4;14:653-664. doi: 10.2147/CLEP.S362170. eCollection 2022.

本文引用的文献

1
The Danish National Patient Registry: a review of content, data quality, and research potential.
Clin Epidemiol. 2015 Nov 17;7:449-90. doi: 10.2147/CLEP.S91125. eCollection 2015.
2
Geographical variation in use of intensive care: a nationwide study.
Intensive Care Med. 2015 Nov;41(11):1895-902. doi: 10.1007/s00134-015-3999-3. Epub 2015 Aug 4.
3
The Danish Civil Registration System as a tool in epidemiology.
Eur J Epidemiol. 2014 Aug;29(8):541-9. doi: 10.1007/s10654-014-9930-3. Epub 2014 Jun 26.
7
Type 2 diabetes and 1-year mortality in intensive care unit patients.
Eur J Clin Invest. 2013 Mar;43(3):238-47. doi: 10.1111/eci.12036. Epub 2012 Dec 14.
9
[Danish Intensive Care Database].
Ugeskr Laeger. 2012 Oct 15;174(42):2544.
10
The variability of critical care bed numbers in Europe.
Intensive Care Med. 2012 Oct;38(10):1647-53. doi: 10.1007/s00134-012-2627-8. Epub 2012 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验