Tavassolizadeh Ali, Rott Karsten, Meier Tobias, Quandt Eckhard, Hölscher Hendrik, Reiss Günter, Meyners Dirk
Institute for Materials Science, Kiel University, Kaiserstrasse 2, 24143 Kiel, Germany.
Department of Physics, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
Sensors (Basel). 2016 Nov 11;16(11):1902. doi: 10.3390/s16111902.
Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.
磁致伸缩隧道磁电阻(TMR)传感器在微纳尺度应变传感技术中展现出光明的前景。TMR传感器在机械应力作用下的行为及其对应力的灵敏度取决于磁性隧道结(MTJ)相对于应力轴的磁化配置。在此,我们提出一种配置,使得拉伸应力和压缩应力对隧道电阻产生相反的影响。基于改进的斯托纳 - 沃尔法斯(SW)模型进行了数值模拟,以了解传感层的磁化反转情况,并找出实现高应变灵敏度所需的最佳偏置磁场。在0.2×10⁻³应变下,当偏置磁场为 -3.2 kA/m时,分别计算出拉伸应力和压缩应力下的应变系数为2294和 -311。使用四点弯曲装置对直径为30±0.2μm的圆形结进行了实验研究建模结果。测量得到的磁场和应变回线与计算结果显示出几乎相同的趋势。而且,应变系数也在相同范围内。在 -3.2 kA/m的偏置磁场下,该结在拉伸应力和压缩应力下的应变系数分别为2150±30和 -260。实验结果与建模结果的一致性证实了所提出的配置具有高灵敏度,并且单个TMR传感器能够同时检测拉伸应力和压缩应力。