Pursiainen S, Vorwerk J, Wolters C H
Department of Mathematics, Tampere University of Technology, PO Box 553, FI-33101 Tampere, Finland.
Phys Med Biol. 2016 Dec 21;61(24):8502-8520. doi: 10.1088/0031-9155/61/24/8502. Epub 2016 Nov 15.
The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.
本研究的目标是开发基于有限元法(FEM)的局部、精确且稳健的方法,该方法能够根据计算域的结构及其内部初级源电流分布预测其表面的电势。在进行脑电图(EEG)评估时,将源电流放置到几何结构复杂的灰质区域是一项具有挑战性但又必不可少的任务,以避免因组织电导率跃变而导致的正向误差。在此,通过一种数学上严格的公式来处理此任务,其中电流场通过散度协调的H(div)基函数进行建模。使用线性和二次函数,而势场通过标准线性拉格朗日(节点)基进行离散化。所得模型包含偶极源,这些偶极源利用两种替代方法插值到一组随机的位置和方向:基于位置的优化(PBO)和平均位置/方向(MPO)方法。这些结果表明,当前的偶极方法至少在某些方面能够达到甚至超过两种经典参考方法的精度,即利用单极载荷而非偶极电流的部分积分(PI)和圣维南(SV)方法。