Rezaei Atena, Antonakakis Marios, Piastra MariaCarla, Wolters Carsten H, Pursiainen Sampsa
Computing Sciences, Faculty of Information Technology and Communication Sciences, Tampere University, Hervanta Campus, P.O. Box 1001, 33014 Tampere, Finland.
Institute of Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster, Germany.
Brain Sci. 2020 Dec 3;10(12):934. doi: 10.3390/brainsci10120934.
In this article, we focused on developing the conditionally Gaussian hierarchical Bayesian model (CG-HBM), which forms a superclass of several inversion methods for source localization of brain activity using somatosensory evoked potential (SEP) and field (SEF) measurements. The goal of this proof-of-concept study was to improve the applicability of the CG-HBM as a superclass by proposing a robust approach for the parametrization of focal source scenarios. We aimed at a parametrization that is invariant with respect to altering the noise level and the source space size. The posterior difference between the gamma and inverse gamma hyperprior was minimized by optimizing the shape parameter, while a suitable range for the scale parameter can be obtained via the prior-over-measurement signal-to-noise ratio, which we introduce as a new concept in this study. In the source localization experiments, the primary generator of the P20/N20 component was detected in the Brodmann area 3b using the CG-HBM approach and a parameter range derived from the existing knowledge of the Tikhonov-regularized minimum norm estimate, i.e., the classical Gaussian prior model. Moreover, it seems that the detection of deep thalamic activity simultaneously with the P20/N20 component with the gamma hyperprior can be enhanced while using a close-to-optimal shape parameter value.
在本文中,我们专注于开发条件高斯分层贝叶斯模型(CG-HBM),它构成了使用体感诱发电位(SEP)和场(SEF)测量进行脑活动源定位的几种反演方法的超类。这项概念验证研究的目标是通过提出一种用于聚焦源场景参数化的稳健方法,来提高CG-HBM作为超类的适用性。我们旨在实现一种对噪声水平和源空间大小变化具有不变性的参数化。通过优化形状参数,使伽马和逆伽马超先验之间的后验差异最小化,而尺度参数的合适范围可以通过先验测量信噪比获得,我们在本研究中将其作为一个新概念引入。在源定位实验中,使用CG-HBM方法和从蒂霍诺夫正则化最小范数估计(即经典高斯先验模型)的现有知识导出的参数范围,在布罗德曼3b区检测到了P20/N20成分的主要发生器。此外,在使用接近最优形状参数值时,似乎可以增强在伽马超先验情况下与P20/N20成分同时检测到的丘脑深部活动。