Suppr超能文献

将个体学习风格与趋避动机特质及强化学习的计算方面联系起来。

Linking Individual Learning Styles to Approach-Avoidance Motivational Traits and Computational Aspects of Reinforcement Learning.

作者信息

Aberg Kristoffer Carl, Doell Kimberly C, Schwartz Sophie

机构信息

Department of Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland.

出版信息

PLoS One. 2016 Nov 16;11(11):e0166675. doi: 10.1371/journal.pone.0166675. eCollection 2016.

Abstract

Learning how to gain rewards (approach learning) and avoid punishments (avoidance learning) is fundamental for everyday life. While individual differences in approach and avoidance learning styles have been related to genetics and aging, the contribution of personality factors, such as traits, remains undetermined. Moreover, little is known about the computational mechanisms mediating differences in learning styles. Here, we used a probabilistic selection task with positive and negative feedbacks, in combination with computational modelling, to show that individuals displaying better approach (vs. avoidance) learning scored higher on measures of approach (vs. avoidance) trait motivation, but, paradoxically, also displayed reduced learning speed following positive (vs. negative) outcomes. These data suggest that learning different types of information depend on associated reward values and internal motivational drives, possibly determined by personality traits.

摘要

学习如何获得奖励(趋近学习)和避免惩罚(回避学习)是日常生活的基础。虽然趋近和回避学习风格的个体差异与基因和衰老有关,但人格因素(如特质)的作用仍未确定。此外,对于介导学习风格差异的计算机制知之甚少。在这里,我们使用了一个带有正反馈和负反馈的概率选择任务,并结合计算建模,以表明在趋近(相对于回避)学习方面表现更好的个体在趋近(相对于回避)特质动机测量中得分更高,但矛盾的是,在获得正(相对于负)结果后,他们的学习速度也会降低。这些数据表明,学习不同类型的信息取决于相关的奖励价值和内在动机驱动,这可能由人格特质决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/104b/5113060/f816acc88859/pone.0166675.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验