Suver Marie P, Huda Ainul, Iwasaki Nicole, Safarik Steve, Dickinson Michael H
Department of Biology, University of Washington, Seattle, Washington 98195.
Neuroscience Institute, New York University School of Medicine, New York, New York 10016, and.
J Neurosci. 2016 Nov 16;36(46):11768-11780. doi: 10.1523/JNEUROSCI.2277-16.2016.
The means by which brains transform sensory information into coherent motor actions is poorly understood. In flies, a relatively small set of descending interneurons are responsible for conveying sensory information and higher-order commands from the brain to motor circuits in the ventral nerve cord. Here, we describe three pairs of genetically identified descending interneurons that integrate information from wide-field visual interneurons and project directly to motor centers controlling flight behavior. We measured the physiological responses of these three cells during flight and found that they respond maximally to visual movement corresponding to rotation around three distinct body axes. After characterizing the tuning properties of an array of nine putative upstream visual interneurons, we show that simple linear combinations of their outputs can predict the responses of the three descending cells. Last, we developed a machine vision-tracking system that allows us to monitor multiple motor systems simultaneously and found that each visual descending interneuron class is correlated with a discrete set of motor programs.
Most animals possess specialized sensory systems for encoding body rotation, which they use for stabilizing posture and regulating motor actions. In flies and other insects, the visual system contains an array of specialized neurons that integrate local optic flow to estimate body rotation during locomotion. However, the manner in which the output of these cells is transformed by the downstream neurons that innervate motor centers is poorly understood. We have identified a set of three visual descending neurons that integrate the output of nine large-field visual interneurons and project directly to flight motor centers. Our results provide new insight into how the sensory information that encodes body motion is transformed into a code that is appropriate for motor actions.
大脑将感官信息转化为连贯的运动行为的方式目前还知之甚少。在果蝇中,相对较少的一组下行中间神经元负责将感官信息和大脑发出的高阶指令传递到腹神经索中的运动回路。在此,我们描述了三对经过基因鉴定的下行中间神经元,它们整合来自广域视觉中间神经元的信息,并直接投射到控制飞行行为的运动中枢。我们测量了这三个细胞在飞行过程中的生理反应,发现它们对与围绕三个不同身体轴旋转相对应的视觉运动反应最大。在表征了九个假定的上游视觉中间神经元阵列的调谐特性后,我们表明它们输出的简单线性组合可以预测这三个下行细胞的反应。最后,我们开发了一种机器视觉跟踪系统,使我们能够同时监测多个运动系统,并发现每一类视觉下行中间神经元都与一组离散的运动程序相关。
大多数动物拥有专门的感觉系统来编码身体旋转,它们利用这些系统来稳定姿势和调节运动行为。在果蝇和其他昆虫中,视觉系统包含一系列专门的神经元,这些神经元整合局部光流以估计运动过程中的身体旋转。然而,这些细胞的输出是如何被支配运动中枢的下游神经元转化的,目前还知之甚少。我们已经鉴定出一组三个视觉下行神经元,它们整合了九个大视野视觉中间神经元的输出,并直接投射到飞行运动中枢。我们的结果为编码身体运动的感官信息如何转化为适合运动行为的代码提供了新的见解。