Solé-Ribalta Albert, Gómez Sergio, Arenas Alex
Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Internet Interdisciplinary Institute, Universitat Oberta de Catalunya, 08018 Barcelona, Catalonia, Spain.
Departament d'Enginyeria Informàtica i Matemàtiques , Universitat Rovira i Virgili , 43007 Tarragona, Spain.
R Soc Open Sci. 2016 Oct 12;3(10):160098. doi: 10.1098/rsos.160098. eCollection 2016 Oct.
The rapid growth of population in urban areas is jeopardizing the mobility and air quality worldwide. One of the most notable problems arising is that of traffic congestion. With the advent of technologies able to sense real-time data about cities, and its public distribution for analysis, we are in place to forecast scenarios valuable for improvement and control. Here, we propose an idealized model, based on the critical phenomena arising in complex networks, that allows to analytically predict congestion hotspots in urban environments. Results on real cities' road networks, considering, in some experiments, real traffic data, show that the proposed model is capable of identifying susceptible junctions that might become hotspots if mobility demand increases.
城市地区人口的快速增长正危及全球的交通流动性和空气质量。其中最显著的问题之一就是交通拥堵。随着能够感知城市实时数据并进行公开传播以供分析的技术的出现,我们能够预测对改善和控制有价值的情景。在此,我们基于复杂网络中出现的临界现象提出一个理想化模型,该模型能够分析预测城市环境中的拥堵热点。在一些实验中考虑真实交通数据的真实城市道路网络的结果表明,所提出的模型能够识别出如果交通需求增加可能成为热点的易拥堵路口。