Suppr超能文献

特邀评论:改善严重急性营养不良的评估需要更多数据。

Invited Commentary: Improving Estimates of Severe Acute Malnutrition Requires More Data.

作者信息

Hure Alexis, Oldmeadow Christopher, Attia John

出版信息

Am J Epidemiol. 2016 Dec 15;184(12):870-872. doi: 10.1093/aje/kww131. Epub 2016 Nov 17.

Abstract

In this issue of the Journal, Isanaka et al. (Am J Epidemiol 2016;184(12):861-869) set out to update an incidence correction factor used for estimating numbers of cases of severe acute malnutrition (SAM) in children aged 6-59 months. The total number of current SAM cases (prevalent cases) increases by the number of new (incident) cases and decreases as a result of recovery or death. Prevalence estimates are obtained from cross-sectional surveys. Calculation of incidence typically requires longitudinal data, which evidently are rarely collected for SAM, and so a correction factor is applied instead. Isanaka et al. pool and meta-analyze data from longitudinal and community programs in 3 West African countries (Mali, Niger, and Burkina Faso), covering the period 2009-2012. Heterogeneity and the ongoing lack of data undermine the use of a single incidence correction factor for SAM estimates. Routine data collection is recommended as a way forward and aligns with recommendations of the World Health Organization. This commentary helps to outline a context for the use of such data and provide some perspective on the inadequacy of data, relative to the importance of the issue.

摘要

在本期《杂志》中,伊萨纳卡等人(《美国流行病学杂志》2016年;184(12):861 - 869)着手更新一个用于估算6至59个月大儿童严重急性营养不良(SAM)病例数的发病率校正因子。当前SAM病例(现患病例)总数因新发病例数增加而上升,并因康复或死亡而减少。患病率估计值来自横断面调查。发病率的计算通常需要纵向数据,而显然针对SAM很少收集此类数据,因此改为应用一个校正因子。伊萨纳卡等人汇总并对来自3个西非国家(马里、尼日尔和布基纳法索)2009 - 2012年期间的纵向和社区项目数据进行了荟萃分析。异质性以及持续的数据缺乏妨碍了使用单一发病率校正因子来估算SAM。建议将常规数据收集作为前进方向,这与世界卫生组织的建议一致。本述评有助于勾勒出使用此类数据的背景,并就相对于该问题重要性而言数据的不足提供一些观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验