Isanaka Sheila, Boundy Ellen O'Neal, Grais Rebecca F, Myatt Mark, Briend André
Am J Epidemiol. 2016 Dec 15;184(12):861-869. doi: 10.1093/aje/kww129. Epub 2016 Nov 17.
Severe acute malnutrition (SAM) is reported to affect 19 million children worldwide. However, this estimate is based on prevalence data from cross-sectional surveys and can be expected to miss some children affected by an acute condition such as SAM. The burden of acute conditions is more appropriately represented by cumulative incidence data. In the absence of incidence data, a method for burden estimation has been proposed that corrects available prevalence estimates to account for incident cases using an "incidence correction factor." We used data from 3 West African countries (Mali, Niger, and Burkina Faso, 2009-2012) to test the hypothesis that a single incidence correction factor may be used for estimation of SAM burden. We estimated the incidence correction factor and performed meta-analysis to calculate summary estimates for each country and for all 3 countries. Heterogeneity between countries and years was assessed using the I statistic. We estimated a pooled incidence correction factor of 4.82 (95% confidence interval: 3.15, 7.38), although there was substantial between-country heterogeneity (I = 69%). Knowing how many children in a particular area will be malnourished is fundamental to planning an effective operational response. Our results show that the incidence correction factor varies widely and suggest that estimating the burden of SAM with a common incidence correction factor is unlikely to be adequate.
据报道,全球有1900万儿童受到严重急性营养不良(SAM)的影响。然而,这一估计是基于横断面调查的患病率数据,预计会遗漏一些受SAM等急性疾病影响的儿童。急性疾病的负担更适合用累积发病率数据来表示。在缺乏发病率数据的情况下,有人提出了一种负担估计方法,即使用“发病率校正因子”对现有的患病率估计值进行校正,以计入新发病例。我们使用来自3个西非国家(马里、尼日尔和布基纳法索,2009 - 2012年)的数据来检验是否可以使用单一发病率校正因子来估计SAM负担这一假设。我们估计了发病率校正因子,并进行荟萃分析以计算每个国家以及所有3个国家的汇总估计值。使用I统计量评估国家和年份之间的异质性。我们估计合并发病率校正因子为4.82(95%置信区间:3.15, 7.38),尽管国家之间存在很大的异质性(I = 69%)。了解特定地区有多少儿童会营养不良对于规划有效的行动应对措施至关重要。我们的结果表明,发病率校正因子差异很大,并表明用一个通用的发病率校正因子来估计SAM负担不太可能足够。