Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375, USA.
Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8552, USA.
Sci Rep. 2016 Nov 21;6:37429. doi: 10.1038/srep37429.
The ability to tune both magnetic and electric properties in magnetoelectric (ME) composite heterostructures is crucial for multiple transduction applications including energy harvesting or magnetic field sensing, or other transduction devices. While large ME coupling achieved through interfacial strain-induced rotation of magnetic anisotropy in magnetostrictive/piezoelectric multiferroic heterostructures has been demonstrated, there are presently certain restrictions for achieving a full control of magnetism in an extensive operational dynamic range, limiting practical realization of this effect. Here, we demonstrate the possibility of generating substantial reversible anisotropy changes through induced interfacial strains driven by applied electric fields in magnetostrictive thin films deposited on (0 1 1)-oriented domain-engineered ternary relaxor ferroelectric single crystals with extended temperature and voltage ranges as compared to binary relaxors. We show, through a combination of angular magnetization and magneto-optical domain imaging measurements, that a 90° in-plane rotation of the magnetic anisotropy and propagation of magnetic domains with low applied electric fields under zero electric field bias are realized. To our knowledge, the present value attained for converse magnetoelectric coupling coefficient is the highest achieved in the linear piezoelectric regime and expected to be stable for a wide temperature range, thus representing a step towards practical ME transduction devices.
在磁电(ME)复合材料异质结构中同时调整磁性和电性的能力对于多种转换应用至关重要,包括能量收集或磁场感应,或其他转换设备。虽然已经证明了通过磁致伸缩/压电多铁异质结构中界面应变诱导的磁各向异性旋转实现了大的 ME 耦合,但目前在广泛的工作动态范围内实现对磁性的完全控制存在某些限制,限制了这种效应的实际实现。在这里,我们通过施加电场驱动磁致伸缩薄膜中产生的界面应变来证明通过施加电场在(011)取向畴工程三元弛豫铁电单晶上沉积的磁致伸缩薄膜中产生大量可逆转各向异性变化的可能性,与二元弛豫相比,其温度和电压范围都得到了扩展。我们通过角磁化和磁光畴成像测量的组合表明,在零电场偏置下施加低电场即可实现 90°的面内磁各向异性旋转和磁畴传播。据我们所知,目前在线性压电区域中获得的逆磁电耦合系数是最高的,预计在很宽的温度范围内是稳定的,因此代表着朝着实用的 ME 转换器件迈出了一步。