NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden.
Schizophr Bull. 2017 Jul 1;43(4):914-924. doi: 10.1093/schbul/sbw145.
Schizophrenia (SZ) is a severe mental illness with high heritability and complex etiology. Mounting evidence from neuroimaging has implicated disrupted brain network connectivity in the pathophysiology. However, previous findings are inconsistent, likely due to a combination of methodological and clinical variability and relatively small sample sizes. Few studies have used a data-driven approach for characterizing pathological interactions between regions in the whole brain and evaluated the generalizability across independent samples. To overcome this issue, we collected resting-state functional magnetic resonance imaging data from 3 independent samples (1 from Norway and 2 from Sweden) consisting of 182 persons with a SZ spectrum diagnosis and 348 healthy controls. We used a whole-brain data-driven definition of network nodes and regularized partial correlations to evaluate and compare putatively direct brain network node interactions between groups. The clinical utility of the functional connectivity features and the generalizability of effects across samples were evaluated by training and testing multivariate classifiers in the independent samples using machine learning. Univariate analyses revealed 14 network edges with consistent reductions in functional connectivity encompassing frontal, somatomotor, visual, auditory, and subcortical brain nodes in patients with SZ. We found a high overall accuracy in classifying patients and controls (up to 80%) using independent training and test samples, strongly supporting the generalizability of connectivity alterations across different scanners and heterogeneous samples. Overall, our findings demonstrate robust reductions in functional connectivity in SZ spectrum disorders, indicating disrupted information flow in sensory, subcortical, and frontal brain regions.
精神分裂症(SZ)是一种具有高度遗传性和复杂病因的严重精神疾病。越来越多的神经影像学证据表明,大脑网络连接的中断与这种疾病的病理生理学有关。然而,之前的研究结果并不一致,这可能是由于方法学和临床变异性以及相对较小的样本量的综合作用。很少有研究使用数据驱动的方法来描述整个大脑中区域之间的病理相互作用,并评估其在独立样本中的可推广性。为了克服这个问题,我们从 3 个独立的样本(1 个来自挪威,2 个来自瑞典)中收集了静息态功能磁共振成像数据,这些样本包括 182 名 SZ 谱系诊断患者和 348 名健康对照者。我们使用全脑数据驱动的网络节点定义和正则化部分相关来评估和比较组间潜在的直接大脑网络节点相互作用。我们通过在独立样本中使用机器学习对功能连接特征进行训练和测试多元分类器,评估了功能连接特征的临床实用性和效应在样本间的可推广性。单变量分析显示,在 SZ 患者中,有 14 条网络边缘的功能连接一致性降低,涵盖了额叶、躯体运动、视觉、听觉和皮质下脑区的节点。我们发现,使用独立的训练和测试样本对患者和对照组进行分类的准确率很高(高达 80%),这强烈支持了连接改变在不同扫描仪和异质样本中的可推广性。总的来说,我们的研究结果表明,SZ 谱系障碍患者的功能连接存在明显减少,表明感觉、皮质下和额叶脑区的信息流中断。