Suppr超能文献

新型海洋鞘氨醇单胞菌 WL 从海洋鞘氨醇单胞菌 WG 中的制备和表征。

The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG.

机构信息

Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China.

出版信息

Sci Rep. 2016 Nov 24;6:37899. doi: 10.1038/srep37899.

Abstract

Sphingans, a group of structurally closely related bacterial exopolysaccharides produced by members of the genus Sphingomonas, can be applied in a variety of industries such as food, cement, and personal care applications due to their high viscosity. A high sphingan-producing-bacterium, Sphingomonas sp. WG can secret large quantity of sphingan designated as WL. To enhance the production of WL, a three-stage control strategy was applied and the highest WL production can reach 33.3 g/L. The rheological analysis showed that the aqueous solution of WL had high viscosity, typical shearing-thinning behavior and great stability to high temperature, a wide range of pH (1 to 14), and high salinity. WL was composed principally of carbohydrate with 6.52% O-acyl groups. The carbohydrate portion of WL contained about 13% glucuronic acid and some neutral sugars including mannose, glucose and rhamnose in the molar ratio of 1:2.28:2.12. Partial acid hydrolysis of WL produced a new oligosaccharide WL-1. Structural resolution revealed that WL-1 consisted of α-L-Rha-(1→4)-β-L-Rha-(1→4)-β-D-Glc-(1→3)-α-D-Glc with β-D-Man substituent at the third glucose residue and carboxyl and O-acyl groups. These findings will broaden the applications of this novel sphingan in food, ink, oil and other industries.

摘要

鞘氨醇烷,一类结构密切相关的细菌胞外多糖,由鞘氨醇单胞菌属的成员产生,由于其高粘度,可应用于食品、水泥和个人护理等多种行业。一种高产量的鞘氨醇烷产生菌,即鞘氨醇单胞菌 WG,可以大量分泌一种名为 WL 的鞘氨醇烷。为了提高 WL 的产量,采用了三阶段控制策略,最高 WL 产量可达 33.3 g/L。流变分析表明,WL 的水溶液具有高粘度、典型的剪切变稀行为和对高温、大范围 pH 值(1 至 14)和高盐度的高稳定性。WL 主要由碳水化合物组成,其中 O-酰基含量为 6.52%。WL 的碳水化合物部分含有约 13%的葡萄糖醛酸和一些中性糖,包括甘露糖、葡萄糖和鼠李糖,摩尔比为 1:2.28:2.12。WL 的部分酸水解产生了一种新的寡糖 WL-1。结构解析表明,WL-1 由 α-L-Rha-(1→4)-β-L-Rha-(1→4)-β-D-Glc-(1→3)-α-D-Glc 组成,第三个葡萄糖残基上有β-D-Man 取代基和羧基及 O-酰基。这些发现将拓宽这种新型鞘氨醇烷在食品、油墨、石油等行业的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229a/5121650/d5c135158a62/srep37899-f1.jpg

相似文献

2
The Function of β-1,4-Glucuronosyltransferase WelK in the Sphingan WL Gum Biosynthesis Process in Marine Sphingomonas sp. WG.
Mar Biotechnol (NY). 2021 Feb;23(1):39-50. doi: 10.1007/s10126-020-09998-9. Epub 2020 Sep 26.
3
Rheological behaviors of a novel exopolysaccharide produced by Sphingomonas WG and the potential application in enhanced oil recovery.
Int J Biol Macromol. 2020 Nov 1;162:1816-1824. doi: 10.1016/j.ijbiomac.2020.08.114. Epub 2020 Aug 15.
4
Enzymatic degradation, antioxidant and rheological properties of a sphingan WL gum from Sphingomonas sp. WG.
Int J Biol Macromol. 2022 Jun 15;210:622-629. doi: 10.1016/j.ijbiomac.2022.04.218. Epub 2022 May 1.
5
The simultaneous production of sphingan Ss and poly(R-3-hydroxybutyrate) in Sphingomonas sanxanigenens NX02.
Int J Biol Macromol. 2016 Jan;82:361-8. doi: 10.1016/j.ijbiomac.2015.09.071. Epub 2015 Oct 3.
6
Cost-Efficient Production of the Sphingan WL Gum by Sphingomonas sp. WG Using Molasses and Sucrose as the Carbon Sources.
Mar Biotechnol (NY). 2023 Feb;25(1):192-203. doi: 10.1007/s10126-022-10193-1. Epub 2023 Jan 13.
7
Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159.
J Ind Microbiol Biotechnol. 2008 Apr;35(4):263-74. doi: 10.1007/s10295-008-0303-3. Epub 2008 Jan 22.
9
Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan.
Int J Syst Evol Microbiol. 2001 May;51(Pt 3):827-41. doi: 10.1099/00207713-51-3-827.
10
Occurrence, production, and applications of gellan: current state and perspectives.
Appl Microbiol Biotechnol. 2008 Jul;79(6):889-900. doi: 10.1007/s00253-008-1496-0. Epub 2008 May 28.

引用本文的文献

1
A Novel Exopolysaccharide Produced by sp. MT01 and Its Potential Application in Enhanced Oil Recovery.
Polymers (Basel). 2025 Jan 14;17(2):186. doi: 10.3390/polym17020186.
3
Bacteria inhabiting spider webs enhance host silk extensibility.
Sci Rep. 2024 May 14;14(1):11011. doi: 10.1038/s41598-024-61723-x.
4
Biosurfactant: an emerging tool for the petroleum industries.
Front Microbiol. 2023 Sep 12;14:1254557. doi: 10.3389/fmicb.2023.1254557. eCollection 2023.
5
Physicochemical and Structural Characterization of Alkali-Treated Biopolymer Sphingan WL Gum from Marine sp. WG.
ACS Omega. 2023 Feb 8;8(7):7163-7171. doi: 10.1021/acsomega.3c00172. eCollection 2023 Feb 21.
6
Cost-Efficient Production of the Sphingan WL Gum by Sphingomonas sp. WG Using Molasses and Sucrose as the Carbon Sources.
Mar Biotechnol (NY). 2023 Feb;25(1):192-203. doi: 10.1007/s10126-022-10193-1. Epub 2023 Jan 13.
7
Identification of the Key Enzymes in WL Gum Biosynthesis and Critical Composition in Viscosity Control.
Front Bioeng Biotechnol. 2022 May 27;10:918687. doi: 10.3389/fbioe.2022.918687. eCollection 2022.
8
Biopolymers Produced by Strains and Their Potential Applications in Petroleum Production.
Polymers (Basel). 2022 May 9;14(9):1920. doi: 10.3390/polym14091920.
9
Hybrid Histidine Kinase WelA of sp. WG Contributes to WL Gum Biosynthesis and Motility.
Front Microbiol. 2022 Mar 1;13:792315. doi: 10.3389/fmicb.2022.792315. eCollection 2022.
10
Biosurfactants and Their Applications in the Oil and Gas Industry: Current State of Knowledge and Future Perspectives.
Front Bioeng Biotechnol. 2021 Feb 15;9:626639. doi: 10.3389/fbioe.2021.626639. eCollection 2021.

本文引用的文献

1
Structure and antioxidant activity of an extracellular polysaccharide from coral-associated fungus, Aspergillus versicolor LCJ-5-4.
Carbohydr Polym. 2012 Jan 4;87(1):218-226. doi: 10.1016/j.carbpol.2011.07.042. Epub 2011 Jul 30.
3
Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2.
Int J Biol Macromol. 2016 Jul;88:603-13. doi: 10.1016/j.ijbiomac.2016.04.035. Epub 2016 Apr 22.
4
Structure of oligosaccharide F21 derived from exopolysaccharide WL-26 produced by Sphingomonas sp. ATCC 31555.
Carbohydr Polym. 2012 Sep 1;90(1):60-6. doi: 10.1016/j.carbpol.2012.04.061. Epub 2012 May 6.
5
Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature.
Bioprocess Biosyst Eng. 2014 Sep;37(9):1849-58. doi: 10.1007/s00449-014-1159-8. Epub 2014 Mar 2.
6
Welan gum: microbial production, characterization, and applications.
Int J Biol Macromol. 2014 Apr;65:454-61. doi: 10.1016/j.ijbiomac.2014.01.061. Epub 2014 Feb 6.
7
An insight into the emerging exopolysaccharide gellan gum as a novel polymer.
Carbohydr Polym. 2013 Apr 2;93(2):670-8. doi: 10.1016/j.carbpol.2013.01.030. Epub 2013 Jan 21.
8
The comparison of rheological properties of aqueous welan gum and xanthan gum solutions.
Carbohydr Polym. 2013 Jan 30;92(1):516-22. doi: 10.1016/j.carbpol.2012.09.082. Epub 2012 Oct 13.
10
Enhanced welan gum production using a two-stage agitation speed control strategy in Alcaligenes sp. CGMCC2428.
Bioprocess Biosyst Eng. 2011 Jan;34(1):95-102. doi: 10.1007/s00449-010-0450-6. Epub 2010 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验