文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

TGFβ 受体 II 相互作用蛋白-1 是一种细胞内蛋白,在细胞外作为基质矿化的调节剂发挥作用。

TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization.

机构信息

Brodie Tooth Development Genetics &Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, Il 60612, USA.

出版信息

Sci Rep. 2016 Nov 24;6:37885. doi: 10.1038/srep37885.


DOI:10.1038/srep37885
PMID:27883077
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5121659/
Abstract

Transforming growth factor beta receptor II interacting protein 1 (TRIP-1), a predominantly intracellular protein is localized in the ECM of bone. TRIP-1 lacks a signal peptide, therefore, in this study, we provide evidence that intracellular TRIP-1 can be packaged and exported to the ECM via exosomes. Overexpression of TRIP-1 in MC3T3-E1 cells resulted in increased matrix mineralization during differentiation and knockdown resulted in reduced effects. In vivo function of TRIP-1 was studied by an implantation assay performed using TRIP-1 overexpressing and knockdown cells cultured in a 3-dimmensional scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells showed higher calcium and phosphate deposits, arranged collagen fibrils and increased expression of Runx2 and alkaline phosphatase. Nucleation studies on demineralized and deproteinized dentin wafer is a powerful tool to determine the functional role of noncollagenous proteins in matrix mineralization. Using this system, we provide evidence that TRIP-1 binds to Type-I collagen and can promote mineralization. Surface plasmon resonance analysis demonstrated that TRIP-1 binds to collagen with K = 48 μM. SEM and TEM analysis showed that TRIP-1 promoted the nucleation and growth of calcium phosphate mineral aggregates. Taken together, we provide mechanistic insights of this intracellular protein in matrix mineralization.

摘要

转化生长因子β受体 II 相互作用蛋白 1(TRIP-1)是一种主要存在于细胞内的蛋白质,定位于骨细胞外基质(ECM)中。TRIP-1 缺乏信号肽,因此,在本研究中,我们提供了证据表明细胞内的 TRIP-1 可以通过外泌体被包装并输出到 ECM 中。在 MC3T3-E1 细胞中过表达 TRIP-1 会导致分化过程中基质矿化增加,而敲低则会导致效果降低。通过在三维支架中培养过表达和敲低 TRIP-1 的细胞进行植入实验研究了 TRIP-1 的体内功能。4 周后,过表达 TRIP-1 细胞的皮下组织显示出更高的钙和磷酸盐沉积物、排列整齐的胶原纤维以及 Runx2 和碱性磷酸酶的表达增加。脱矿和去蛋白牙本质片上的成核研究是确定非胶原蛋白在基质矿化中的功能作用的有力工具。使用该系统,我们提供了证据表明 TRIP-1 与 I 型胶原结合并能促进矿化。表面等离子体共振分析表明 TRIP-1 与胶原蛋白的结合常数为 48μM。SEM 和 TEM 分析表明,TRIP-1 促进了钙磷矿化聚集体的成核和生长。综上所述,我们提供了这种细胞内蛋白质在基质矿化中的作用机制的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/236968c9f906/srep37885-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/154d898bfbf0/srep37885-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/24f8ca539585/srep37885-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/b8a623573d9a/srep37885-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/8a283967fceb/srep37885-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/831cb775e3a9/srep37885-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/9d042a7f7567/srep37885-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/cc0b10d1c5c6/srep37885-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/adea053a4450/srep37885-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/0f4ec5780401/srep37885-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/d15b7c7ca384/srep37885-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/236968c9f906/srep37885-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/154d898bfbf0/srep37885-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/24f8ca539585/srep37885-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/b8a623573d9a/srep37885-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/8a283967fceb/srep37885-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/831cb775e3a9/srep37885-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/9d042a7f7567/srep37885-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/cc0b10d1c5c6/srep37885-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/adea053a4450/srep37885-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/0f4ec5780401/srep37885-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/d15b7c7ca384/srep37885-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a6/5121659/236968c9f906/srep37885-f11.jpg

相似文献

[1]
TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization.

Sci Rep. 2016-11-24

[2]
TRIP-1 in the extracellular matrix promotes nucleation of calcium phosphate polymorphs.

Connect Tissue Res. 2018-12

[3]
Insights into the Structure and Function of TRIP-1, a Newly Identified Member in Calcified Tissues.

Biomolecules. 2023-2-22

[4]
Localization of transforming growth factor beta receptor II interacting protein-1 in bone and teeth: implications in matrix mineralization.

J Histochem Cytochem. 2012-1-19

[5]
Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation.

Bone. 2009-11-10

[6]
Soluble matrix from osteoblastic cells induces mineralization by dental pulp cells.

J Med Invest. 2006-8

[7]
TRIP-1 Promotes the Assembly of an ECM That Contains Extracellular Vesicles and Factors That Modulate Angiogenesis.

Front Physiol. 2018-8-15

[8]
Transforming growth factor-beta inhibition of mineralization by neonatal rat osteoblasts in monolayer and collagen gel culture.

In Vitro Cell Dev Biol Anim. 1995-4

[9]
An in vitro assessment of a cell-containing collagenous extracellular matrix-like scaffold for bone tissue engineering.

Tissue Eng Part A. 2010-3

[10]
von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation.

Calcif Tissue Int. 2003-5

引用本文的文献

[1]
DMP1-mediated transformation of DPSCs to CD31/CD144 cells demonstrate endothelial phenotype both and .

Front Cell Dev Biol. 2025-8-8

[2]
The Role of Autophagy in the Mineralization Process of Bone and Dentin.

Int J Mol Sci. 2025-6-29

[3]
ECM-binding properties of extracellular vesicles: advanced delivery strategies for therapeutic applications in bone and joint diseases.

Cell Commun Signal. 2025-4-2

[4]
Caffeine regulates both osteoclast and osteoblast differentiation via the AKT, NF-κB, and MAPK pathways.

Front Pharmacol. 2024-6-13

[5]
Liver cancer cells with nuclear MET overexpression release translation regulatory protein-enriched extracellular vesicles exhibit metastasis promoting activity.

J Extracell Biol. 2022-5-8

[6]
Extracellular Vesicles in Bone Remodeling and Osteoporosis.

Adv Exp Med Biol. 2023

[7]
Insights into the Structure and Function of TRIP-1, a Newly Identified Member in Calcified Tissues.

Biomolecules. 2023-2-22

[8]
GRP78 promotes the osteogenic and angiogenic response in periodontal ligament stem cells.

Eur Cell Mater. 2023-1-23

[9]
Biomineralization of Enamel and Dentin Mediated by Matrix Proteins.

J Dent Res. 2021-9

[10]
Extracellular Vesicles: Potential Mediators of Psychosocial Stress Contribution to Osteoporosis?

Int J Mol Sci. 2021-5-29

本文引用的文献

[1]
Matrix vesicles: Are they anchored exosomes?

Bone. 2015-10

[2]
Clusterin facilitates metastasis by EIF3I/Akt/MMP13 signaling in hepatocellular carcinoma.

Oncotarget. 2015-2-20

[3]
The translation initiation factor eIF3i up-regulates vascular endothelial growth factor A, accelerates cell proliferation, and promotes angiogenesis in embryonic development and tumorigenesis.

J Biol Chem. 2014-10-10

[4]
3-D self-assembling leucine zipper hydrogel with tunable properties for tissue engineering.

Biomaterials. 2014-7

[5]
Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization.

Bone. 2013-11-6

[6]
Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation.

J Mech Behav Biomed Mater. 2013-7-18

[7]
Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold.

Tissue Eng Part A. 2013-8-21

[8]
In vitro models of collagen biomineralization.

J Struct Biol. 2013-4-15

[9]
The translational factor eIF3f: the ambivalent eIF3 subunit.

Cell Mol Life Sci. 2013-1-25

[10]
Polyphosphates inhibit extracellular matrix mineralization in MC3T3-E1 osteoblast cultures.

Bone. 2013-1-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索