Suppr超能文献

退火处理后 CoO/[Co/Pd] 多层膜中超薄 Co-O 氧化物层诱导的垂直各向异性磁矩。

Ultrathin Co-O oxide layer-driven perpendicular magnetic anisotropy in a CoO/[Co/Pd] multilayer matrix upon annealing.

机构信息

Nano Quantum Electronics Lab, Department of Electronics and Computer Engineering, Hanyang University, Seoul, 133-791, South Korea.

Novel Functional Materials and Devices Laboratory, Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul, 133-791, South Korea.

出版信息

Sci Rep. 2016 Nov 25;6:37503. doi: 10.1038/srep37503.

Abstract

Ferromagnetic/noble metal multilayer (ML) frames are expected to serve as reliable building blocks in a variety of perpendicular magnetic anisotropy (PMA) based spintronic devices. However, ultrathin ML matrices are highly susceptible to unintended reduction of electron spin polarization in the as-grown or annealed states and often require a large repeat number. Here, we introduce a simple approach to achieve thermally stable PMA in ultrathin [Co/Pd] MLs involving the incorporation of an ultrathin CoO capping layer. The thickness and oxygen content of the CoO layer are critical parameters to achieve enhanced PMA in ultrathin [Co/Pd]/CoO MLs post-annealed up to 400 °C. An extensive analysis of structural features identified that robust PMA characteristics in [Co/Pd]/CoO MLs are linked with thermally activated oxygen atom diffusion leading to structural reconfiguration upon annealing. The possible origin of the enhanced PMA in our [Co/Pd]/CoO ML samples after high-temperature annealing is discussed, thereby enabling their use in future spintronic-related devices.

摘要

铁磁/贵金属多层(ML)框架有望成为各种基于垂直各向异性(PMA)的自旋电子器件的可靠构建块。然而,超薄 ML 基质在生长或退火状态下极易发生电子自旋极化的意外降低,并且通常需要较大的重复数。在这里,我们介绍了一种简单的方法,通过在超薄 [Co/Pd] ML 中引入超薄 CoO 覆盖层来实现热稳定的 PMA。CoO 层的厚度和氧含量是实现经高达 400°C 退火后的超薄 [Co/Pd]/CoO ML 中增强 PMA 的关键参数。对结构特征的广泛分析表明,在 [Co/Pd]/CoO ML 中,稳定的 PMA 特性与热激活氧原子扩散有关,在退火时导致结构重新配置。讨论了我们的 [Co/Pd]/CoO ML 样品在高温退火后增强 PMA 的可能起源,从而使它们能够用于未来与自旋电子相关的设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e4d/5122862/402f4683b40c/srep37503-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验