Suppr超能文献

视觉光线对线粒体的影响:与青光眼相关的潜在意义。

Visual light effects on mitochondria: The potential implications in relation to glaucoma.

机构信息

Instituto Universitario Fernández Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avda. Doctores Fernández-Vega 34, E-33012 Oviedo, Asturias, Spain.

Instituto Universitario Fernández Vega, Fundación de Investigación Oftalmológica, Universidad de Oviedo, Avda. Doctores Fernández-Vega 34, E-33012 Oviedo, Asturias, Spain.

出版信息

Mitochondrion. 2017 Sep;36:29-35. doi: 10.1016/j.mito.2016.11.009. Epub 2016 Nov 24.

Abstract

Light of different wave-lengths have the potential to interact with four major mitochondrial protein complexes that are involved in the generation of ATP. Neurones of the central nervous system have an absolute dependence on mitochondrial generated ATP. Laboratory studies show that short-wave or blue light (400-480nm) that impinges on the retina affect flavin and cytochrome constituents associated with mitochondria to decrease the rate of ATP formation, stimulate ROS and results in cell death. This suggests that blue light could potentially have a negative influence on retinal ganglion cell (RGC) mitochondria that are abundant and not shielded by macular pigments as occurs for photoreceptor mitochondria. This might be of significance in glaucoma where it is likely that RGC mitochondria are already affected and therefore be more susceptible to blue light. Thus simply filtering out some natural blue light from entering the eye might be beneficial for the treatment of glaucoma. Long-wave or red light (650-800nm) affects mitochondrial complex IV or cytochrome oxidase to increase the rate of formation of ATP and ROS causing the generation of a number of beneficial factors. Significantly, laboratory studies show that increasing the normal amount of natural red light reaching rat RGC mitochondria in situ, subjected to ischemia, proved to be beneficial. A challenge now is to test whether extra red light delivered to the human retina can slow-down RGC loss in glaucoma. Such a methodology has also the advantage of being non-invasive. One very exciting possibility might be in the production of a lens where solar UV light is convertes to add to the amount of natural red light entering the eye.

摘要

不同波长的光有可能与涉及 ATP 生成的四个主要线粒体蛋白复合物相互作用。中枢神经系统的神经元绝对依赖于线粒体产生的 ATP。实验室研究表明,短波长或蓝光(400-480nm)照射到视网膜会影响与线粒体相关的黄素和细胞色素成分,从而降低 ATP 形成的速度,刺激活性氧簇并导致细胞死亡。这表明蓝光可能对视网膜神经节细胞(RGC)线粒体产生负面影响,因为 RGC 线粒体丰富,不像感光细胞线粒体那样受到黄斑色素的保护。这在青光眼患者中可能具有重要意义,因为 RGC 线粒体已经受到影响,因此更容易受到蓝光的影响。因此,简单地过滤掉一些进入眼睛的天然蓝光可能有益于青光眼的治疗。长波长或红光(650-800nm)影响线粒体复合物 IV 或细胞色素氧化酶,增加 ATP 和 ROS 的形成速度,从而产生许多有益因素。重要的是,实验室研究表明,增加正常到达处于缺血状态的大鼠 RGC 线粒体的天然红光量被证明是有益的。现在的挑战是测试向人类视网膜提供额外的红光是否可以减缓青光眼的 RGC 损失。这种方法还有一个优势,即它是非侵入性的。一个非常令人兴奋的可能性是在生产一种镜片,将太阳紫外线转化为增加进入眼睛的天然红光量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验