Suppr超能文献

用于短时间窗口稳态视觉诱发电位分类的滤波器组时间局部典型相关分析

Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification.

作者信息

Shao Xinghan, Lin Mingxing

机构信息

School of Mechanical Engineering, Shandong University, Jinan, 250000 China.

出版信息

Cogn Neurodyn. 2020 Oct;14(5):689-696. doi: 10.1007/s11571-020-09620-7. Epub 2020 Jul 29.

Abstract

Canonical correlation analysis (CCA) method and its extended methods have been widely and successfully applied to the frequency recognition in SSVEP-based BCI systems. As a state-of-the-art extended method, filter bank canonical correlation analysis has higher accuracy and information transmission rate (ITR) than CCA. However, in the CCA method, the temporally local structure of samples has not been well considered. In this correspondence, we proposed termed temporally local canonical correlation analysis (TCCA). In this new method, the original covariance matrix was replaced by the temporally local covariance matrix. Furthermore, we proposed an improved frequency identification method of filter bank based on TCCA, named filter bank temporally local canonical correlation analysis (FBTCCA). In the offline environment, we used a leave-one-subject-out validation strategy on datasets of ten testees to optimize the parameters of TCCA and FBTCCA and evaluate the two algorithms. The experimental results affirm that TCCA markedly outperformed CCA, and FBTCCA obtained the highest accuracy among the four methods. This study corroborates that TCCA-based approaches have great potential for implementing short time window SSVEP-based BCI systems.

摘要

典型相关分析(CCA)方法及其扩展方法已被广泛且成功地应用于基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统中的频率识别。作为一种先进的扩展方法,滤波器组典型相关分析比CCA具有更高的准确率和信息传输率(ITR)。然而,在CCA方法中,样本的时间局部结构没有得到很好的考虑。在本通信中,我们提出了时间局部典型相关分析(TCCA)。在这种新方法中,原始协方差矩阵被时间局部协方差矩阵所取代。此外,我们基于TCCA提出了一种改进的滤波器组频率识别方法,称为滤波器组时间局部典型相关分析(FBTCCA)。在离线环境中,我们对十名受试者的数据集采用留一法验证策略来优化TCCA和FBTCCA的参数,并评估这两种算法。实验结果证实,TCCA明显优于CCA,并且FBTCCA在四种方法中获得了最高的准确率。本研究证实基于TCCA的方法在实现基于短时间窗口SSVEP的BCI系统方面具有巨大潜力。

相似文献

1
Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification.
Cogn Neurodyn. 2020 Oct;14(5):689-696. doi: 10.1007/s11571-020-09620-7. Epub 2020 Jul 29.
2
Multi-information improves the performance of CCA-based SSVEP classification.
Cogn Neurodyn. 2024 Feb;18(1):165-172. doi: 10.1007/s11571-022-09923-x. Epub 2023 Jan 9.
3
Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
J Neural Eng. 2015 Aug;12(4):046008. doi: 10.1088/1741-2560/12/4/046008. Epub 2015 Jun 2.
4
A classification algorithm of an SSVEP brain-Computer interface based on CCA fusion wavelet coefficients.
J Neurosci Methods. 2022 Apr 1;371:109502. doi: 10.1016/j.jneumeth.2022.109502. Epub 2022 Feb 11.
5
Filter bank temporally local multivariate synchronization index for SSVEP-based BCI.
BMC Bioinformatics. 2024 Jul 2;25(1):227. doi: 10.1186/s12859-024-05838-y.
6
Spatio-Spectral CCA (SS-CCA): A novel approach for frequency recognition in SSVEP-based BCI.
J Neurosci Methods. 2022 Apr 1;371:109499. doi: 10.1016/j.jneumeth.2022.109499. Epub 2022 Feb 10.
7
Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
J Neural Eng. 2017 Apr;14(2):026007. doi: 10.1088/1741-2552/aa5847. Epub 2017 Jan 10.
8
A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer.
Int J Neural Syst. 2018 Dec;28(10):1850028. doi: 10.1142/S0129065718500284. Epub 2018 Jun 18.
9
Filter bank approach for enhancement of supervised Canonical Correlation Analysis methods for SSVEP-based BCI spellers.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:337-340. doi: 10.1109/EMBC46164.2021.9630838.
10
A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
J Neural Eng. 2021 Mar 8;18(3). doi: 10.1088/1741-2552/ab914e.

引用本文的文献

1
Reducing calibration efforts of SSVEP-BCIs by shallow fine-tuning-based transfer learning.
Cogn Neurodyn. 2025 Dec;19(1):81. doi: 10.1007/s11571-025-10264-8. Epub 2025 May 26.
2
A novel hybrid method based on task-related component and canonical correlation analyses (H-TRCCA) for enhancing SSVEP recognition.
Front Neurosci. 2025 Apr 25;19:1544452. doi: 10.3389/fnins.2025.1544452. eCollection 2025.
3
Brain-computer Interaction in the Smart Era.
Curr Med Sci. 2024 Dec;44(6):1123-1131. doi: 10.1007/s11596-024-2927-6. Epub 2024 Sep 30.
4
Filter bank temporally delayed CCA for uncalibrated SSVEP-BCI.
Med Biol Eng Comput. 2025 Feb;63(2):355-363. doi: 10.1007/s11517-024-03193-x. Epub 2024 Sep 24.
5
Time-frequency feature extraction based on multivariable synchronization index for training-free SSVEP-based BCI.
Cogn Neurodyn. 2024 Aug;18(4):1733-1741. doi: 10.1007/s11571-023-10035-3. Epub 2023 Dec 11.
6
Filter bank temporally local multivariate synchronization index for SSVEP-based BCI.
BMC Bioinformatics. 2024 Jul 2;25(1):227. doi: 10.1186/s12859-024-05838-y.
7
Multi-information improves the performance of CCA-based SSVEP classification.
Cogn Neurodyn. 2024 Feb;18(1):165-172. doi: 10.1007/s11571-022-09923-x. Epub 2023 Jan 9.
8
[Progresses and prospects on frequency recognition methods for steady-state visual evoked potential].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):192-197. doi: 10.7507/1001-5515.202102031.

本文引用的文献

1
Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms.
Proc IEEE Inst Electr Electron Eng. 2015 Jun;103(6):907-925. doi: 10.1109/jproc.2015.2407272. Epub 2015 May 20.
2
An ERP-based BCI with peripheral stimuli: validation with ALS patients.
Cogn Neurodyn. 2020 Feb;14(1):21-33. doi: 10.1007/s11571-019-09541-0. Epub 2019 Jun 11.
3
Two-Stage Frequency Recognition Method Based on Correlated Component Analysis for SSVEP-Based BCI.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jul;26(7):1314-1323. doi: 10.1109/TNSRE.2018.2848222.
4
Towards correlation-based time window selection method for motor imagery BCIs.
Neural Netw. 2018 Jun;102:87-95. doi: 10.1016/j.neunet.2018.02.011. Epub 2018 Mar 2.
5
Effects of spectral smearing of stimuli on the performance of auditory steady-state response-based brain-computer interface.
Cogn Neurodyn. 2017 Dec;11(6):515-527. doi: 10.1007/s11571-017-9448-y. Epub 2017 Jul 31.
6
A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain-Computer Interface.
Int J Neural Syst. 2018 May;28(4):1750039. doi: 10.1142/S0129065717500393. Epub 2017 Aug 13.
7
Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index.
Cogn Neurodyn. 2016 Dec;10(6):505-511. doi: 10.1007/s11571-016-9398-9. Epub 2016 Jul 19.
8
Brain-computer interfaces for communication and rehabilitation.
Nat Rev Neurol. 2016 Sep;12(9):513-25. doi: 10.1038/nrneurol.2016.113. Epub 2016 Aug 19.
9
Sparse Bayesian Learning for Obtaining Sparsity of EEG Frequency Bands Based Feature Vectors in Motor Imagery Classification.
Int J Neural Syst. 2017 Mar;27(2):1650032. doi: 10.1142/S0129065716500325. Epub 2016 Apr 11.
10
Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
J Neurosci Methods. 2016 Jan 30;258:104-13. doi: 10.1016/j.jneumeth.2015.11.001. Epub 2015 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验