Shao Xinghan, Lin Mingxing
School of Mechanical Engineering, Shandong University, Jinan, 250000 China.
Cogn Neurodyn. 2020 Oct;14(5):689-696. doi: 10.1007/s11571-020-09620-7. Epub 2020 Jul 29.
Canonical correlation analysis (CCA) method and its extended methods have been widely and successfully applied to the frequency recognition in SSVEP-based BCI systems. As a state-of-the-art extended method, filter bank canonical correlation analysis has higher accuracy and information transmission rate (ITR) than CCA. However, in the CCA method, the temporally local structure of samples has not been well considered. In this correspondence, we proposed termed temporally local canonical correlation analysis (TCCA). In this new method, the original covariance matrix was replaced by the temporally local covariance matrix. Furthermore, we proposed an improved frequency identification method of filter bank based on TCCA, named filter bank temporally local canonical correlation analysis (FBTCCA). In the offline environment, we used a leave-one-subject-out validation strategy on datasets of ten testees to optimize the parameters of TCCA and FBTCCA and evaluate the two algorithms. The experimental results affirm that TCCA markedly outperformed CCA, and FBTCCA obtained the highest accuracy among the four methods. This study corroborates that TCCA-based approaches have great potential for implementing short time window SSVEP-based BCI systems.
典型相关分析(CCA)方法及其扩展方法已被广泛且成功地应用于基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)系统中的频率识别。作为一种先进的扩展方法,滤波器组典型相关分析比CCA具有更高的准确率和信息传输率(ITR)。然而,在CCA方法中,样本的时间局部结构没有得到很好的考虑。在本通信中,我们提出了时间局部典型相关分析(TCCA)。在这种新方法中,原始协方差矩阵被时间局部协方差矩阵所取代。此外,我们基于TCCA提出了一种改进的滤波器组频率识别方法,称为滤波器组时间局部典型相关分析(FBTCCA)。在离线环境中,我们对十名受试者的数据集采用留一法验证策略来优化TCCA和FBTCCA的参数,并评估这两种算法。实验结果证实,TCCA明显优于CCA,并且FBTCCA在四种方法中获得了最高的准确率。本研究证实基于TCCA的方法在实现基于短时间窗口SSVEP的BCI系统方面具有巨大潜力。