Suppr超能文献

微磁刺激增强皮层锥体神经元的控制。

Enhanced Control of Cortical Pyramidal Neurons With Micromagnetic Stimulation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1375-1386. doi: 10.1109/TNSRE.2016.2631446. Epub 2016 Nov 22.

Abstract

Magnetic stimulation is less sensitive to the inflammatory reactions that plague conventional electrode-based cortical implants and therefore may be useful as a next-generation (implanted) cortical prosthetic. The fields arising from micro-coils are quite small however and thus, their ability to modulate cortical activity must first be established. Here, we show that layer V pyramidal neurons (PNs) can be strongly activated by micro-coil stimulation and further, the asymmetric fields arising from such coils do not simultaneously activate horizontally-oriented axon fibers, thus confining activation to a focal region around the coil. The spatially-narrow fields from micro-coils allowed the sensitivity of different regions within a single PN to be compared: while the proximal axon was most sensitive in naïve cells, repetitive stimulation over the apical dendrite led to a change in state of the neuron that reduced thresholds there to below those of the axon. Thus, our results raise the possibility that regardless of the mode of stimulation, penetration depths that target specific portions of the apical dendrite may actually be more effective than those that target Layer 6. Interestingly, the state change had similar properties to state changes described previously at the systems level, suggesting a possible neuronal mechanism underlying such responses.

摘要

磁刺激对困扰传统基于电极的皮质植入物的炎症反应不太敏感,因此可能作为下一代(植入式)皮质假体有用。然而,微线圈产生的场非常小,因此必须首先确定其调节皮质活动的能力。在这里,我们表明微线圈刺激可以强烈激活 V 层锥体神经元 (PN),并且这种线圈产生的不对称场不会同时激活水平方向的轴突纤维,从而将激活限制在围绕线圈的焦点区域。微线圈产生的空间狭窄的场允许比较单个 PN 内不同区域的敏感性:虽然近端轴突在未受刺激的细胞中最敏感,但在树突顶端的重复刺激会导致神经元状态发生变化,从而降低那里的阈值低于轴突的阈值。因此,我们的结果提出了一种可能性,即无论刺激模式如何,针对树突特定部分的穿透深度实际上可能比针对第 6 层的穿透深度更有效。有趣的是,状态变化具有与之前在系统水平上描述的状态变化相似的特性,这表明这种反应可能存在潜在的神经元机制。

相似文献

1
Enhanced Control of Cortical Pyramidal Neurons With Micromagnetic Stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1375-1386. doi: 10.1109/TNSRE.2016.2631446. Epub 2016 Nov 22.
2
The response of L5 pyramidal neurons of the PFC to magnetic stimulation from a micro-coil.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6125-8. doi: 10.1109/EMBC.2014.6945027.
3
Micro-Coil Design Influences the Spatial Extent of Responses to Intracortical Magnetic Stimulation.
IEEE Trans Biomed Eng. 2019 Jun;66(6):1680-1694. doi: 10.1109/TBME.2018.2877713. Epub 2018 Oct 23.
4
Suppression of subthalamic nucleus activity by micromagnetic stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):116-27. doi: 10.1109/TNSRE.2014.2348415. Epub 2014 Aug 21.
5
Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation.
J Neural Eng. 2015 Aug;12(4):046014. doi: 10.1088/1741-2560/12/4/046014. Epub 2015 Jun 8.
10
Mini-coil for magnetic stimulation in the behaving primate.
J Neurosci Methods. 2011 Jan 15;194(2):242-51. doi: 10.1016/j.jneumeth.2010.10.015. Epub 2010 Oct 23.

引用本文的文献

1
Restore axonal conductance in a locally demyelinated axon with electromagnetic stimulation.
J Neural Eng. 2025 Feb 14;22(1):016042. doi: 10.1088/1741-2552/adb213.
2
Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation.
Adv Sci (Weinh). 2024 Dec;11(46):e2404254. doi: 10.1002/advs.202404254. Epub 2024 Oct 24.
3
Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation.
Device. 2024 Apr 19;2(4). doi: 10.1016/j.device.2024.100290. Epub 2024 Mar 5.
4
Functional and Effective Connectivity Underlying Semantic Verbal Fluency.
Brain Topogr. 2024 Nov;37(6):1043-1054. doi: 10.1007/s10548-024-01059-x. Epub 2024 Jun 5.
5
Cellular mechanisms underlying carry-over effects after magnetic stimulation.
Sci Rep. 2024 Mar 2;14(1):5167. doi: 10.1038/s41598-024-55915-8.
6
System-level biological effects of extremely low-frequency electromagnetic fields: an experimental review.
Front Neurosci. 2023 Oct 6;17:1247021. doi: 10.3389/fnins.2023.1247021. eCollection 2023.
7
Improving focality and consistency in micromagnetic stimulation.
Front Comput Neurosci. 2023 Feb 2;17:1105505. doi: 10.3389/fncom.2023.1105505. eCollection 2023.
8
Neuron matters: neuromodulation with electromagnetic stimulation must consider neurons as dynamic identities.
J Neuroeng Rehabil. 2022 Nov 3;19(1):116. doi: 10.1186/s12984-022-01094-4.
9
Short-pulsed micro-magnetic stimulation of the vagus nerve.
Front Physiol. 2022 Oct 7;13:938101. doi: 10.3389/fphys.2022.938101. eCollection 2022.
10
Thermal effects on neurons during stimulation of the brain.
J Neural Eng. 2022 Oct 7;19(5):056029. doi: 10.1088/1741-2552/ac9339.

本文引用的文献

2
Wireless magnetothermal deep brain stimulation.
Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12.
3
Synaptic circuit organization of motor corticothalamic neurons.
J Neurosci. 2015 Feb 4;35(5):2293-307. doi: 10.1523/JNEUROSCI.4023-14.2015.
4
Suppression of subthalamic nucleus activity by micromagnetic stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):116-27. doi: 10.1109/TNSRE.2014.2348415. Epub 2014 Aug 21.
7
Pyramidal neurons in prefrontal cortex receive subtype-specific forms of excitation and inhibition.
Neuron. 2014 Jan 8;81(1):61-8. doi: 10.1016/j.neuron.2013.10.031. Epub 2013 Dec 19.
9
The response of retinal neurons to high-frequency stimulation.
J Neural Eng. 2013 Jun;10(3):036009. doi: 10.1088/1741-2560/10/3/036009. Epub 2013 Apr 18.
10
Electrical induction of vision.
Neurosci Biobehav Rev. 2013 Jun;37(5):803-18. doi: 10.1016/j.neubiorev.2013.03.012. Epub 2013 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验