Suppr超能文献

基于并行 Adaboost-Backpropagation 神经网络的大规模图像数据集分类。

A Parallel Adaboost-Backpropagation Neural Network for Massive Image Dataset Classification.

机构信息

Department of Computer Science &Technology, Xinzhou Teachers University, Xinzhou 034000, China.

School of Computer Science &Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China.

出版信息

Sci Rep. 2016 Dec 1;6:38201. doi: 10.1038/srep38201.

Abstract

Image classification uses computers to simulate human understanding and cognition of images by automatically categorizing images. This study proposes a faster image classification approach that parallelizes the traditional Adaboost-Backpropagation (BP) neural network using the MapReduce parallel programming model. First, we construct a strong classifier by assembling the outputs of 15 BP neural networks (which are individually regarded as weak classifiers) based on the Adaboost algorithm. Second, we design Map and Reduce tasks for both the parallel Adaboost-BP neural network and the feature extraction algorithm. Finally, we establish an automated classification model by building a Hadoop cluster. We use the Pascal VOC2007 and Caltech256 datasets to train and test the classification model. The results are superior to those obtained using traditional Adaboost-BP neural network or parallel BP neural network approaches. Our approach increased the average classification accuracy rate by approximately 14.5% and 26.0% compared to the traditional Adaboost-BP neural network and parallel BP neural network, respectively. Furthermore, the proposed approach requires less computation time and scales very well as evaluated by speedup, sizeup and scaleup. The proposed approach may provide a foundation for automated large-scale image classification and demonstrates practical value.

摘要

图像分类使用计算机通过自动对图像进行分类来模拟人类对图像的理解和认知。本研究提出了一种更快的图像分类方法,该方法使用 MapReduce 并行编程模型对传统的 Adaboost-Backpropagation(BP)神经网络进行并行化。首先,我们根据 Adaboost 算法,通过组装 15 个 BP 神经网络(它们各自被视为弱分类器)的输出,构建一个强分类器。其次,我们为并行 Adaboost-BP 神经网络和特征提取算法设计了 Map 和 Reduce 任务。最后,我们通过构建 Hadoop 集群建立了一个自动化分类模型。我们使用 Pascal VOC2007 和 Caltech256 数据集对分类模型进行训练和测试。结果优于传统的 Adaboost-BP 神经网络或并行 BP 神经网络方法。与传统的 Adaboost-BP 神经网络和并行 BP 神经网络相比,我们的方法将平均分类准确率分别提高了约 14.5%和 26.0%。此外,该方法的计算时间更少,并且在加速比、扩展比和可扩展性方面表现良好。该方法可能为自动化大规模图像分类提供基础,并展示了实际价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/730f/5131302/b776fbbc9cce/srep38201-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验