Garg Bharti, Giri Bhuwan, Majumder Kaustav, Dudeja Vikas, Banerjee Sulagna, Saluja Ashok
Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA.
Division of Surgical Oncology, Department of Surgery, University of Miami, FL, USA.
Cancer Lett. 2017 Mar 1;388:64-72. doi: 10.1016/j.canlet.2016.11.026. Epub 2016 Dec 3.
β-Catenin/Wnt signaling pathway is critically regulated in a normal cell by a number of post-translational modifications. In pancreatic cancer however, aberrant activation of this pathway plays a significant role in tumor progression and metastasis. Though a number of studies have focused on understanding Wnt signaling pathway in pancreatic cancer, there has been no systematic study to evaluate molecules that may be affecting this pathway. In the current study, we used a diterpene triepoxide, triptolide, to inhibit post-translational modifications in Wnt pathway and evaluated how this compound may be affecting the intricate signaling that regulates cell proliferation in pancreatic cancer. Our results showed that triptolide inhibits the activation of WNT1, FZD1, and disheveled (DSH) in pancreatic cancer cell lines MIA PaCa-2 and S2-VP10 by inhibiting the phosphorylation of LRP6 and simultaneously blocked translocation of β-catenin to the nucleus by inhibiting its glycosylation. Additionally, inhibition of post-translational modification of the Wnt-signaling pathway also demonstrated regression of tumor growth in a Syngenic Tumor Implantation Model (STIM). Interestingly, these findings suggest Wnt signaling is a vital molecular pathway in pancreatic cancer and may be amenable to targeted drug therapy.
β-连环蛋白/Wnt信号通路在正常细胞中受到多种翻译后修饰的严格调控。然而,在胰腺癌中,该通路的异常激活在肿瘤进展和转移中起着重要作用。尽管许多研究致力于理解胰腺癌中的Wnt信号通路,但尚未有系统的研究来评估可能影响该通路的分子。在本研究中,我们使用二萜三环氧物雷公藤内酯醇来抑制Wnt通路中的翻译后修饰,并评估该化合物如何影响调节胰腺癌细胞增殖的复杂信号。我们的结果表明,雷公藤内酯醇通过抑制低密度脂蛋白受体相关蛋白6(LRP6)的磷酸化,抑制了胰腺癌细胞系MIA PaCa-2和S2-VP10中WNT1、卷曲蛋白1(FZD1)和散乱蛋白(DSH)的激活,并通过抑制β-连环蛋白的糖基化同时阻断其向细胞核的转运。此外,在同基因肿瘤植入模型(STIM)中,对Wnt信号通路翻译后修饰的抑制也显示出肿瘤生长的消退。有趣的是,这些发现表明Wnt信号是胰腺癌中的一个重要分子通路,可能适合靶向药物治疗。