Sakai Takahiro, Imai Jun, Ito Tomohiro, Takagaki Hidetsugu, Ui Michio, Hatta Shinichi
Laboratory of Cell Physiology and Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan.
Laboratory of Cell Physiology and Chemistry, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033, Japan.
Biochem Biophys Res Commun. 2017 Jan 22;482(4):1183-1189. doi: 10.1016/j.bbrc.2016.12.009. Epub 2016 Dec 5.
The hydroxyl radical (OH) possesses the strongest oxidation potential among reactive oxygen species (ROS). Hydroxyl radicals react nonpreferentially with proteins, lipids, and nucleic acids. Additionally, mitochondrial localization of OH causes dysfunction in the mitochondria. The cytoplasmic targets of OH-induced oxidation are unknown. No cytoplasm-specific OH scavenger is available; thus, elucidating the cytoplasmic targets of OH-induced oxidation has proven difficult. Accordingly, we developed a cytoplasm-specific OH-targeted scavenger, TA293, and a mitochondrion-specific scavenger, mitoTA293. Both TA293 and mitoTA293 scavenged OH but not O or HO. We then examined the intracellular localization of both scavengers in vitro and in vivo. TA293 scavenged pyocyanin-induced cytoplasmic OH but not antimycin A-induced mitochondrial oxidation. mitoTA293 scavenged antimycin A-induced mitochondrial OH but not cytoplasmic OH. TA293 but not mitoTA293 suppressed pyocyanin-induced oxidative damage in the lungs and kidneys of mice. Additionally, TA293 suppressed the expression of inflammatory signaling pathway components and mediators and suppressed OH-induced cellular senescence and apoptosis. These data suggested that TA293 could be used as a novel tool for studying the effects of hydroxyl radical damage within the cytoplasm.
羟自由基(OH)在活性氧(ROS)中具有最强的氧化电位。羟自由基与蛋白质、脂质和核酸发生非选择性反应。此外,OH在线粒体中的定位会导致线粒体功能障碍。OH诱导氧化的细胞质靶点尚不清楚。目前尚无细胞质特异性的OH清除剂;因此,阐明OH诱导氧化的细胞质靶点已被证明很困难。因此,我们开发了一种细胞质特异性的OH靶向清除剂TA293和一种线粒体特异性清除剂mitoTA293。TA293和mitoTA293都能清除OH,但不能清除O或HO。然后,我们在体外和体内检测了这两种清除剂的细胞内定位。TA293能清除绿脓菌素诱导的细胞质OH,但不能清除抗霉素A诱导的线粒体氧化。mitoTA293能清除抗霉素A诱导的线粒体OH,但不能清除细胞质OH。TA293而非mitoTA293可抑制绿脓菌素诱导的小鼠肺和肾的氧化损伤。此外,TA293可抑制炎症信号通路成分和介质的表达,并抑制OH诱导的细胞衰老和凋亡。这些数据表明,TA293可作为研究细胞质内羟自由基损伤作用的一种新型工具。