CNRS, Aix Marseille Université, Institut de Chimie Radicalaire UMR 7273, Equipe Sondes Moléculaires en Biologie et Stress Oxydant, Marseille, France.
Chem Biol Interact. 2012 Sep 30;199(3):161-76. doi: 10.1016/j.cbi.2012.08.007. Epub 2012 Aug 22.
To better understand the antioxidant (enzyme mimetic, free radical scavenger) versus oxidant and cytotoxic properties of the industrially used cerium oxide nanoparticles (nano-CeO(2)), we investigated their effects on reactive oxygen species formation and changes in the antioxidant pool of human dermal and murine 3T3 fibroblasts at doses relevant to chronic inhalation or contact with skin. Electron paramagnetic resonance (EPR) spin trapping with the nitrone DEPMPO showed that pretreatment of the cells with the nanoparticles dose-dependently triggered the release in the culture medium of superoxide dismutase- and catalase-inhibitable DEPMPO/hydroxyl radical adducts (DEPMPO-OH) and ascorbyl radical, a marker of ascorbate depletion. This DEPMPO-OH formation occurred 2 to 24 h following removal of the particles from the medium and paralleled with an increase of cell lipid peroxidation. These effects of internalized nano-CeO(2) on spin adduct formation were then investigated at the cellular level by using specific NADPH oxidase inhibitors, transfection techniques and a mitochondria-targeted antioxidant. When micromolar doses of nano-CeO(2) were used, weak DEPMPO-OH levels but no loss of cell viability were observed, suggesting that cell signaling mechanisms through protein synthesis and membrane NADPH oxidase activation occurred. Incubation of the cells with higher millimolar doses provoked a 25-60-fold higher DEPMPO-OH formation together with a decrease in cell viability, early apoptosis induction and antioxidant depletion. These cytotoxic effects could be due to activation of both the mitochondrial source and Nox2 and Nox4 dependent NADPH oxidase complex. Regarding possible mechanisms of nano-CeO(2)-induced free radical formation in cells, in vitro EPR and spectrophotometric studies suggest that, contrary to Fe(2+) ions, the Ce(3+) redox state at the surface of the particles is probably not an efficient catalyst of hydroxyl radical formation by a Fenton-like reaction in vivo.
为了更好地了解工业用氧化铈纳米颗粒(纳米-CeO2)的抗氧化(酶模拟物、自由基清除剂)与氧化剂和细胞毒性特性,我们研究了它们在与人皮肤和鼠 3T3 成纤维细胞的抗氧化库的变化以及活性氧形成方面的影响,剂量与慢性吸入或皮肤接触相关。使用氮氧化物 DEPMPO 的电子顺磁共振(EPR)自旋捕获表明,纳米颗粒预处理会剂量依赖性地触发细胞在培养基中释放超氧化物歧化酶和过氧化氢酶可抑制的 DEPMPO/羟基自由基加合物(DEPMPO-OH)和抗坏血酸自由基,这是抗坏血酸消耗的标志物。这种 DEPMPO-OH 的形成发生在从培养基中去除颗粒后的 2 至 24 小时内,并与细胞脂质过氧化的增加平行。然后通过使用特异性 NADPH 氧化酶抑制剂、转染技术和线粒体靶向抗氧化剂,在细胞水平上研究了内化的纳米-CeO2 对自旋加合物形成的影响。当使用微摩尔剂量的纳米-CeO2 时,观察到弱的 DEPMPO-OH 水平但没有细胞活力丧失,这表明通过蛋白质合成和膜 NADPH 氧化酶激活发生了细胞信号转导机制。用更高的毫摩尔剂量孵育细胞会引起 25-60 倍更高的 DEPMPO-OH 形成,同时降低细胞活力、早期凋亡诱导和抗氧化剂消耗。这些细胞毒性作用可能是由于线粒体来源和 Nox2 和 Nox4 依赖性 NADPH 氧化酶复合物的激活。关于纳米-CeO2 诱导细胞内自由基形成的可能机制,体外 EPR 和分光光度研究表明,与 Fe2+离子相反,颗粒表面的 Ce3+氧化还原状态可能不是体内 Fenton 样反应形成羟基自由基的有效催化剂。