Justin Alexander W, Brooks Roger A, Markaki Athina E
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
J R Soc Interface. 2016 Dec;13(125). doi: 10.1098/rsif.2016.0768.
Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel.
血管化对于活组织至关重要,并且仍然是组织工程领域的一项重大挑战。在大型且细胞密集的组织工程构建物中缺乏可灌注的通道网络会导致坏死核心形成,从而阻碍功能性组织和器官的制造。我们报告了一种在大型、细胞化的纤维蛋白水凝胶中生成分层、三维(3D)且可灌注脉管系统的新方法。通过一种新颖的工艺形成了大小从1毫米到200 - 250微米不等的分支通道,在该工艺中,我们通过中间的海藻酸盐水凝胶将3D打印的热塑性材料转化为明胶网络模板。这使得基于CAD的模型设计能够转化为可移除材料,该设计具有高度可定制性、可重复性,并且能够产生高度复杂的架构,可用于细胞环境。我们的方法产生的构建物在主体部分具有均匀且高密度的细胞,由生物活性胶原蛋白和纤维蛋白水凝胶制成。使用标准的细胞染色和免疫组织化学技术,我们展示了良好的细胞接种以及通道内皮细胞之间紧密连接的存在,并且在主体水凝胶中细胞具有高活力和良好的铺展。